Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

March of the giant penguins

26.06.2007
Prehistoric equatorial penguins reached 5 feet in height

Giant prehistoric penguins? In Peru? It sounds more like something out of Hollywood than science, but a researcher from North Carolina State University along with U.S., Peruvian and Argentine collaborators has shown that two heretofore undiscovered penguin species reached equatorial regions tens of millions of years earlier than expected and during a period when the earth was much warmer than it is now.

Paleontologist Dr. Julia Clarke, assistant professor of marine, earth and atmospheric sciences at NC State with appointments at the North Carolina Museum of Natural Sciences and the American Museum of Natural History, and colleagues studied two newly discovered extinct species of penguins. Peruvian paleontologists discovered the new penguins’ sites in 2005.

The research is published online the week of June in Proceedings of the National Academy of Sciences. It was funded by the National Science Foundation Office of International Science and Engineering and the National Geographic Society.

... more about:
»Icadyptes »Peru »Peruvian »equatorial »new species

The first of the new species, Icadyptes salasi, stood 5 feet tall and lived about 36 million years ago. The second new species, Perudyptes devriesi, lived about 42 million years ago, was approximately the same size as a living King Penguin (2 ½ to 3 feet tall) and represents a very early part of penguin evolutionary history. Both of these species lived on the southern coast of Peru.

These new penguin fossils are among the most complete yet recovered and call into question hypotheses about the timing and pattern of penguin evolution and expansion. Previous theories held that penguins probably evolved in high latitudes (Antarctica and New Zealand) and then moved into lower latitudes that are closer to the equator about 10 million years ago – long after significant global cooling that occurred about 34 million years ago.

“We tend to think of penguins as being cold-adapted species,” Clarke says, “even the small penguins in equatorial regions today, but the new fossils date back to one of the warmest periods in the last 65 million years of Earth’s history. The evidence indicates that penguins reached low latitude regions more than 30 million years prior to our previous estimates.”

The new species are the first fossils to indicate a significant and diverse presence of penguins in equatorial areas during a period that predates one of the most important climatic shifts in Earth’s history, the transition from extremely warm temperatures in the Paleocene and Eocene Epochs to the development of “icehouse” Earth conditions and permanent polar icecaps. Not only did penguins reach low latitudes during this warmer interval, but they thrived: more species are known from the new Peruvian localities than inhabit those regions today.

By comparing the pattern of evolutionary relationships with the geographic distribution of other fossil penguins, Clarke and colleagues estimate that the two Peruvian species are the product of two separate dispersal events. The ancestors of Perudyptes appear to have inhabited Antarctica, while those of Icadyptes may have originated near New Zealand.

The new penguin specimens are among the most complete yet discovered that show us what early penguins looked like. Both new species had long narrow pointed beaks – now believed to be an ancestral beak shape for all penguins. Perudyptes devriesi has a slightly longer beak than seen in some living penguins but the giant Icadyptes salasi exhibits a grossly elongated beak with features not known in any extinct or living species. This species’ beak is sharply pointed, almost spear-like in appearance, and its neck is robustly built with strong muscle attachment sites. Icadyptes salasi is among the largest species of penguin yet described.

Although these fossils seem to contradict some of what we think we know about the relationship between penguins and climate, Clarke cautions against assuming that just because prehistoric penguins may not have been cold-adapted, living penguins won’t be negatively affected by climate change.

“These Peruvian species are early branches off the penguin family tree, that are comparatively distant cousins of living penguins,” Clarke says. “In addition, current global warming is occurring on a significantly shorter timescale. The data from these new fossil species cannot be used to argue that warming wouldn’t negatively impact living penguins.”

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

Further reports about: Icadyptes Peru Peruvian equatorial new species

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>