Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modified mushrooms may yield human drugs

26.06.2007
Mushrooms might serve as biofactories for the production of various beneficial human drugs, according to plant pathologists who have inserted new genes into mushrooms.

"There has always been a recognized potential of the mushroom as being a choice platform for the mass production of commercially valuable proteins," said Charles Peter Romaine, who holds the John B. Swayne Chair in spawn science and professor of plant pathology at Penn State. "Mushrooms could make the ideal vehicle for the manufacture of biopharmaceuticals to treat a broad array of human illnesses. But nobody has been able to come up with a feasible way of doing that."

Dr. Romaine and his colleague, Xi Chen, then a post-doctoral scholar at Penn State and now a Syngenta Biotechnology Inc. research scientist, have developed a technique to genetically modify Agaricus bisporus -- the button variety of mushroom, which is the predominant edible species worldwide. One application of their technology is the use of transgenic mushrooms as factories for producing therapeutic proteins, such as vaccines, monoclonal antibodies, and hormones like insulin, or commercial enzymes, such as cellulase for biofuels.

"Right now medical treatment exists for about 500 diseases and genetic disorders, but thanks to the human genome project, before long, new drugs will be available for thousands of other diseases," Dr. Romaine said. "We need a new way of mass-producing protein-based drugs, which is economical, safe, and fast. We believe mushrooms are going to be the platform of the future."

... more about:
»Plasmid »Romaine »bacterium »hygromycin »resistance

To create transgenic mushrooms, researchers attached a gene that confers resistance to hygromycin, an antibiotic, to circular pieces of bacterial DNA called plasmids, which have the ability to multiply within a bacterium known as Agrobacterium.

The hygromycin resistance gene is a marker gene to help sort out the transgenic mushroom cells from the non-transgenic cells, Dr. Romaine explained. "What we are doing is taking a gene, as for example a drug gene, that is not part of the mushroom, and camouflaging it with regulatory elements from a mushroom gene. We then patch these genetic elements in the plasmid and insert it back into the bacterium," he added.

The researchers then snipped small pieces off the mushroom's gill tissue and added it to a flask containing the altered bacterium.

Over the course of several days, as the bacterium goes through its lifecycle, it transfers a portion of its plasmid out of its cell right into the mushroom cell, and integrates the introduced gene into the chromosome of the mushroom.

Next, the researchers exposed the mushroom cells to hygromycin. The antibiotic kills all the normal cells, separating out those that have been genetically altered for resistance.

The test demonstrates that if a second gene, insulin for example, were to be patched in the plasmid, that gene would be expressed as well.

"There is a high probability that if the mushroom cell has the hygromycin resistance gene, it will also have the partner gene," Dr. Romaine added.

The degree of gene expression ultimately depends on where exactly the imported gene lands in the mushroom chromosome, among a complexity of other factors, but researchers point out that the process of producing biopharmaceuticals is potentially faster and cheaper with mushrooms than conventional technologies. Unlike plants that have long growth cycles, "with mushrooms, we can use commercial technology to convert the vegetative tissue from mushroom strains stored in the freezer into vegetative seed. A crop from which drugs may be extracted could be ready in weeks," Dr. Romaine said. A mushroom-based biofactory also would not require expensive infrastructure set up by major drug companies, he added.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Plasmid Romaine bacterium hygromycin resistance

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>