Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modified mushrooms may yield human drugs

26.06.2007
Mushrooms might serve as biofactories for the production of various beneficial human drugs, according to plant pathologists who have inserted new genes into mushrooms.

"There has always been a recognized potential of the mushroom as being a choice platform for the mass production of commercially valuable proteins," said Charles Peter Romaine, who holds the John B. Swayne Chair in spawn science and professor of plant pathology at Penn State. "Mushrooms could make the ideal vehicle for the manufacture of biopharmaceuticals to treat a broad array of human illnesses. But nobody has been able to come up with a feasible way of doing that."

Dr. Romaine and his colleague, Xi Chen, then a post-doctoral scholar at Penn State and now a Syngenta Biotechnology Inc. research scientist, have developed a technique to genetically modify Agaricus bisporus -- the button variety of mushroom, which is the predominant edible species worldwide. One application of their technology is the use of transgenic mushrooms as factories for producing therapeutic proteins, such as vaccines, monoclonal antibodies, and hormones like insulin, or commercial enzymes, such as cellulase for biofuels.

"Right now medical treatment exists for about 500 diseases and genetic disorders, but thanks to the human genome project, before long, new drugs will be available for thousands of other diseases," Dr. Romaine said. "We need a new way of mass-producing protein-based drugs, which is economical, safe, and fast. We believe mushrooms are going to be the platform of the future."

... more about:
»Plasmid »Romaine »bacterium »hygromycin »resistance

To create transgenic mushrooms, researchers attached a gene that confers resistance to hygromycin, an antibiotic, to circular pieces of bacterial DNA called plasmids, which have the ability to multiply within a bacterium known as Agrobacterium.

The hygromycin resistance gene is a marker gene to help sort out the transgenic mushroom cells from the non-transgenic cells, Dr. Romaine explained. "What we are doing is taking a gene, as for example a drug gene, that is not part of the mushroom, and camouflaging it with regulatory elements from a mushroom gene. We then patch these genetic elements in the plasmid and insert it back into the bacterium," he added.

The researchers then snipped small pieces off the mushroom's gill tissue and added it to a flask containing the altered bacterium.

Over the course of several days, as the bacterium goes through its lifecycle, it transfers a portion of its plasmid out of its cell right into the mushroom cell, and integrates the introduced gene into the chromosome of the mushroom.

Next, the researchers exposed the mushroom cells to hygromycin. The antibiotic kills all the normal cells, separating out those that have been genetically altered for resistance.

The test demonstrates that if a second gene, insulin for example, were to be patched in the plasmid, that gene would be expressed as well.

"There is a high probability that if the mushroom cell has the hygromycin resistance gene, it will also have the partner gene," Dr. Romaine added.

The degree of gene expression ultimately depends on where exactly the imported gene lands in the mushroom chromosome, among a complexity of other factors, but researchers point out that the process of producing biopharmaceuticals is potentially faster and cheaper with mushrooms than conventional technologies. Unlike plants that have long growth cycles, "with mushrooms, we can use commercial technology to convert the vegetative tissue from mushroom strains stored in the freezer into vegetative seed. A crop from which drugs may be extracted could be ready in weeks," Dr. Romaine said. A mushroom-based biofactory also would not require expensive infrastructure set up by major drug companies, he added.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Plasmid Romaine bacterium hygromycin resistance

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>