Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modified mushrooms may yield human drugs

26.06.2007
Mushrooms might serve as biofactories for the production of various beneficial human drugs, according to plant pathologists who have inserted new genes into mushrooms.

"There has always been a recognized potential of the mushroom as being a choice platform for the mass production of commercially valuable proteins," said Charles Peter Romaine, who holds the John B. Swayne Chair in spawn science and professor of plant pathology at Penn State. "Mushrooms could make the ideal vehicle for the manufacture of biopharmaceuticals to treat a broad array of human illnesses. But nobody has been able to come up with a feasible way of doing that."

Dr. Romaine and his colleague, Xi Chen, then a post-doctoral scholar at Penn State and now a Syngenta Biotechnology Inc. research scientist, have developed a technique to genetically modify Agaricus bisporus -- the button variety of mushroom, which is the predominant edible species worldwide. One application of their technology is the use of transgenic mushrooms as factories for producing therapeutic proteins, such as vaccines, monoclonal antibodies, and hormones like insulin, or commercial enzymes, such as cellulase for biofuels.

"Right now medical treatment exists for about 500 diseases and genetic disorders, but thanks to the human genome project, before long, new drugs will be available for thousands of other diseases," Dr. Romaine said. "We need a new way of mass-producing protein-based drugs, which is economical, safe, and fast. We believe mushrooms are going to be the platform of the future."

... more about:
»Plasmid »Romaine »bacterium »hygromycin »resistance

To create transgenic mushrooms, researchers attached a gene that confers resistance to hygromycin, an antibiotic, to circular pieces of bacterial DNA called plasmids, which have the ability to multiply within a bacterium known as Agrobacterium.

The hygromycin resistance gene is a marker gene to help sort out the transgenic mushroom cells from the non-transgenic cells, Dr. Romaine explained. "What we are doing is taking a gene, as for example a drug gene, that is not part of the mushroom, and camouflaging it with regulatory elements from a mushroom gene. We then patch these genetic elements in the plasmid and insert it back into the bacterium," he added.

The researchers then snipped small pieces off the mushroom's gill tissue and added it to a flask containing the altered bacterium.

Over the course of several days, as the bacterium goes through its lifecycle, it transfers a portion of its plasmid out of its cell right into the mushroom cell, and integrates the introduced gene into the chromosome of the mushroom.

Next, the researchers exposed the mushroom cells to hygromycin. The antibiotic kills all the normal cells, separating out those that have been genetically altered for resistance.

The test demonstrates that if a second gene, insulin for example, were to be patched in the plasmid, that gene would be expressed as well.

"There is a high probability that if the mushroom cell has the hygromycin resistance gene, it will also have the partner gene," Dr. Romaine added.

The degree of gene expression ultimately depends on where exactly the imported gene lands in the mushroom chromosome, among a complexity of other factors, but researchers point out that the process of producing biopharmaceuticals is potentially faster and cheaper with mushrooms than conventional technologies. Unlike plants that have long growth cycles, "with mushrooms, we can use commercial technology to convert the vegetative tissue from mushroom strains stored in the freezer into vegetative seed. A crop from which drugs may be extracted could be ready in weeks," Dr. Romaine said. A mushroom-based biofactory also would not require expensive infrastructure set up by major drug companies, he added.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Plasmid Romaine bacterium hygromycin resistance

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>