Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light Against Light

26.06.2007
A large group of the Puschino researchers from the Institutes of Theoretical and Experimental Biophysics (RAS), of Basic Problems of Biology (RAS), of Biophysics of Cell (RAS) and the Branch of Institute of Bio-Organic Chemistry (RAS) set out to protect cells from fatal consequences of ultra-violet radiation. The researchers determined that ultra-violet action suppressing cell division could be neutralized by simultaneous irradiation by the vermeil red light.

Experiments were based on mouse cell culture (fibroblasts). Irradiation by ultraviolet with wave-length of 365 nanometers in the 1.8 joule per cubic centimeter dose suppressed their division. As a source of the vermeil red light, the researchers did not use laser but applied a matrix with the Luxeon Star LEDs, their wave-length being 625 nanometers.

The influence of this irradiation on cells depends on the dose. When the dose makes 0.9 joule per cubic centimeter, the vermeil red light stimulated cell division, the irradiation effect remaining even 72 hours afterwards. The twofold and fourfold increased dose suppressed cell division. This effect is similar to the action that the helium-neon laser has on human cells: certain doses of it stimulate cell division, but further radiation intensity increase inhibits it.

Having determined the influence of each type of irradiation on mouse fibroplasts, the researchers set about studying their joint action. They chose the division suppressing dose of the vermeil red light. In case of consecutive irradiation by ultra-violet and vermeil red light or vice versa (first, by vermeil red light and then – by ultraviolet), cell division rate was lower than that in case of only ultra-violet irradiation and several times lower than that in the reference.

However, although simultaneous irradiation suppressed cell division, still it did so to a much lower extent than consecutive irradiation. This phenomenon means that under certain doses of ultra-violet and vermeil red light the latter protects cells from the negative ultra-violet action. It is well-known that the red light of 70 nanometer wave-length also possesses the same protective effect.

The researchers assume that the vermeil red light activates respiratory enzyme – terminal cytochrome-c-oxidase, which increases concentration of active forms of oxygen, and this increase, for its part, stimulates cell division. Nevertheless, cell division stimulation occurs in a very narrow dosage range. The researchers also emphasize that they did not use a low intensity radiation laser as a source of visible light, but applies ordinary LEDs which also have a rather narrow emission band but they are more affordable and economical.

The effect described by the Puschino researchers explains the effective action of light-converting materials, which transform part of the ultra-violet radiation into additional light in the 580 to 750-nanometer range. These materials are now starting to be applied in medicine. The sunlight cures patients with trophic ulcers, cutaneous wounds and burns. It contains the ulter-violet component, which, passing through the light-converting film, accelerates injured skin regeneration.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Irradiation LIGHT Nanometer Radiation Ras cell division ultra-violet vermeil

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>