Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light Against Light

26.06.2007
A large group of the Puschino researchers from the Institutes of Theoretical and Experimental Biophysics (RAS), of Basic Problems of Biology (RAS), of Biophysics of Cell (RAS) and the Branch of Institute of Bio-Organic Chemistry (RAS) set out to protect cells from fatal consequences of ultra-violet radiation. The researchers determined that ultra-violet action suppressing cell division could be neutralized by simultaneous irradiation by the vermeil red light.

Experiments were based on mouse cell culture (fibroblasts). Irradiation by ultraviolet with wave-length of 365 nanometers in the 1.8 joule per cubic centimeter dose suppressed their division. As a source of the vermeil red light, the researchers did not use laser but applied a matrix with the Luxeon Star LEDs, their wave-length being 625 nanometers.

The influence of this irradiation on cells depends on the dose. When the dose makes 0.9 joule per cubic centimeter, the vermeil red light stimulated cell division, the irradiation effect remaining even 72 hours afterwards. The twofold and fourfold increased dose suppressed cell division. This effect is similar to the action that the helium-neon laser has on human cells: certain doses of it stimulate cell division, but further radiation intensity increase inhibits it.

Having determined the influence of each type of irradiation on mouse fibroplasts, the researchers set about studying their joint action. They chose the division suppressing dose of the vermeil red light. In case of consecutive irradiation by ultra-violet and vermeil red light or vice versa (first, by vermeil red light and then – by ultraviolet), cell division rate was lower than that in case of only ultra-violet irradiation and several times lower than that in the reference.

However, although simultaneous irradiation suppressed cell division, still it did so to a much lower extent than consecutive irradiation. This phenomenon means that under certain doses of ultra-violet and vermeil red light the latter protects cells from the negative ultra-violet action. It is well-known that the red light of 70 nanometer wave-length also possesses the same protective effect.

The researchers assume that the vermeil red light activates respiratory enzyme – terminal cytochrome-c-oxidase, which increases concentration of active forms of oxygen, and this increase, for its part, stimulates cell division. Nevertheless, cell division stimulation occurs in a very narrow dosage range. The researchers also emphasize that they did not use a low intensity radiation laser as a source of visible light, but applies ordinary LEDs which also have a rather narrow emission band but they are more affordable and economical.

The effect described by the Puschino researchers explains the effective action of light-converting materials, which transform part of the ultra-violet radiation into additional light in the 580 to 750-nanometer range. These materials are now starting to be applied in medicine. The sunlight cures patients with trophic ulcers, cutaneous wounds and burns. It contains the ulter-violet component, which, passing through the light-converting film, accelerates injured skin regeneration.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Irradiation LIGHT Nanometer Radiation Ras cell division ultra-violet vermeil

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>