Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematics reveals genetic pattern of tumor growth

25.06.2007
Finding could serve as basis for future cancer treatments

Using mathematical theory, UC Irvine scientists have shed light on one of cancer’s most troubling puzzles – how cancer cells can alter their own genetic makeup to accelerate tumor growth. The discovery shows for the first time why this change occurs, providing insight into how cancerous tumors thrive and a potential foundation for future cancer treatments.

UCI mathematicians Natalia Komarova, Alexander Sadovsky and Frederic Wan looked at cancer from the point of view of a tumor and asked: What can a tumor do to optimize its own growth? They focused on the phenomenon of genetic instability, a common feature of cancer in which cells mutate at an abnormally fast rate. These mutations can cause cancer cells to grow, or they can cause the cells to die.

The scientists found that cancerous tumors grow best when they are very unstable in early stages of development and become stable in later stages. In other words, tumors thrive when cancerous cells mutate to speed up malignant transformation, and then stay that way by turning off the mutation rate.

... more about:
»Genetic »Komarova »Mutation »UCI »instability »pattern

The study appeared this week in the Royal Society journal Interface.

“Mathematical theory can help us understand cancer,” said Komarova, associate professor of mathematics at UCI. “If we know what cancer is doing, we might be able to find ways to fight it.”

Previous studies have observed this genetic pattern by using laboratory techniques, but the UCI research is the first to explain why the pattern leads to tumor growth. The occurrence of genetic instability is often debated by cancer scientists, some of whom believe that cancer feeds on this instability and others who believe it is a side-effect of the cancer itself.

To determine the pattern of genetic changes that leads to the most robust tumor growth, Komarova and her colleagues used a mathematical technique called optimal control theory in which they considered a tumor with set characteristics, then changed the cell mutation variable to see under which circumstances the tumor grew best.

“The mutation rate serves as the control knob. Then, we can calculate mathematically how long it takes a tumor with given parameters to reach a certain size,” Komarova said. “We found that at early stages of tumor growth, instability is advantageous, and later on it becomes an impediment. This explains why many tumors exhibit a high level of instability at first, and become stable later in their development.”

This research was supported by a Sloan Fellowship and grants from the National Institutes of Health.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 25,000 undergraduate and graduate students and about 1,800 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.7 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Genetic Komarova Mutation UCI instability pattern

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>