Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematics reveals genetic pattern of tumor growth

25.06.2007
Finding could serve as basis for future cancer treatments

Using mathematical theory, UC Irvine scientists have shed light on one of cancer’s most troubling puzzles – how cancer cells can alter their own genetic makeup to accelerate tumor growth. The discovery shows for the first time why this change occurs, providing insight into how cancerous tumors thrive and a potential foundation for future cancer treatments.

UCI mathematicians Natalia Komarova, Alexander Sadovsky and Frederic Wan looked at cancer from the point of view of a tumor and asked: What can a tumor do to optimize its own growth? They focused on the phenomenon of genetic instability, a common feature of cancer in which cells mutate at an abnormally fast rate. These mutations can cause cancer cells to grow, or they can cause the cells to die.

The scientists found that cancerous tumors grow best when they are very unstable in early stages of development and become stable in later stages. In other words, tumors thrive when cancerous cells mutate to speed up malignant transformation, and then stay that way by turning off the mutation rate.

... more about:
»Genetic »Komarova »Mutation »UCI »instability »pattern

The study appeared this week in the Royal Society journal Interface.

“Mathematical theory can help us understand cancer,” said Komarova, associate professor of mathematics at UCI. “If we know what cancer is doing, we might be able to find ways to fight it.”

Previous studies have observed this genetic pattern by using laboratory techniques, but the UCI research is the first to explain why the pattern leads to tumor growth. The occurrence of genetic instability is often debated by cancer scientists, some of whom believe that cancer feeds on this instability and others who believe it is a side-effect of the cancer itself.

To determine the pattern of genetic changes that leads to the most robust tumor growth, Komarova and her colleagues used a mathematical technique called optimal control theory in which they considered a tumor with set characteristics, then changed the cell mutation variable to see under which circumstances the tumor grew best.

“The mutation rate serves as the control knob. Then, we can calculate mathematically how long it takes a tumor with given parameters to reach a certain size,” Komarova said. “We found that at early stages of tumor growth, instability is advantageous, and later on it becomes an impediment. This explains why many tumors exhibit a high level of instability at first, and become stable later in their development.”

This research was supported by a Sloan Fellowship and grants from the National Institutes of Health.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 25,000 undergraduate and graduate students and about 1,800 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.7 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Genetic Komarova Mutation UCI instability pattern

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>