Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient retrovirus sheds light on modern pandemic

25.06.2007
Human immunity to 'viral fossil' may help explain our vulnerability to HIV

Human resistance to a retrovirus that infected chimpanzees and other nonhuman primates 4 million years ago ironically may be at least partially responsible for the susceptibility of humans to HIV infection today.

These findings, reported by a team of researchers at Fred Hutchinson Cancer Research Center in the June 22 issue of Science, provide a better understanding of this modern pandemic infection through the study of an ancient virus called Pan troglodytes endogenous retrovirus, or PtERV1.

"This ancient virus is a battle that humans have already won. Humans are not susceptible to it and have probably been resistant throughout millennia," said senior author Michael Emerman, Ph.D., a member of the Human Biology and Basic Sciences divisions at the Hutchinson Center. "However, we found that during primate evolution, this innate immunity to one virus may have made us more vulnerable to HIV."

Evidence of human immunity to this ancient retrovirus first emerged with the sequencing of the chimpanzee genome. "When the chimp genome was sequenced, a team of scientists at the University of Washington led by Evan Eichler found the largest difference overall between the chimp and human genomes was the presence or absence of PtERV1," Emerman said. "Chimps have 130 copies of PtERV1 and humans have none."

It is believed that retroviruses have been entering the genome for many millions of years, and so humans share many retroviral DNA fragments with their primate cousins. Such vestiges of primitive infection, rendered inactive by eons of genetic mutation, make up about 8 percent of the human genome.

Innate protection against PtERV1 in humans could be credited, the researchers believe, to the presence of an ancient, rapidly evolving antiviral defense gene called TRIM5a, which produces a protein that binds to and destroys the virus before it can replicate within the body.

"We know that PtERV1 infected chimps, gorillas and old-world monkeys 4 million years ago but left no traces of having infected humans. Our theory is that this is because humans had this innate viral defense system," Emerman said.

To test their hypothesis, Emerman and co-authors Harmit Singh Malik, Ph.D., an evolutionary biologist and an assistant member of the Center's Basic Sciences Division, and Shari Kaiser, a graduate student in Emerman's laboratory, used DNA sequences from the chimp genome to reconstruct a small part of the PtERV1 virus.

They reassembled about one-fifth of the virus by taking dozens of PtERV1 sequences and aligning them to create an "ancestral" sequence, teasing out areas of commonality between them. They then used this information to make a partial viral genome. During reconstruction the viral segment was debilitated, enabling only one round of infection in cells. Working with cells in the laboratory, the researchers found that the human antiviral protein TRIM5a effectively neutralizes this extinct retrovirus, which never successfully fixed into the human genome.

"However, while TRIM5a may have served humans well millions of years ago, the antiviral protein does not seem to be good at defending against any of the retroviruses that currently infect humans, such as HIV-1," Emerman said. "In the end, this drove human evolution to be more susceptible to HIV." For example, the researchers found that changes in TRIM5a that make it better at fighting HIV actually inhibit its ability to stop PtERV1 and vice versa, which indicates that this antiviral gene may only be good at fighting off one virus at a time.

Uncovering the story of TRIM5a's role in battling one ancient retrovirus while increasing human susceptibility to modern-day HIV "is a lot like doing archaeology -- figuring out how humans have become who we are today and why we are or are not susceptible to modern viruses that presently circulate," Emerman said.

In fact, this emerging area of research, which seeks to better understand modern infections by studying ancient viruses, is known as "paleovirology." "Ultimately," said co-author Malik, "if we want to understand why our defenses are the way they are, the answers inevitably lie in these ancient viruses more so than the ones that have affected us only recently, such as HIV."

Kristen Woodward | EurekAlert!
Further information:
http://fhcrc.org

Further reports about: Emerman Genome HIV PtERV1 Retrovirus TRIM5a antiviral human genome sequence

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>