Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Call For Global Push To Advance Research In Synthetic Biology

25.06.2007
Forecasting a revolution in science, the ‘Ilulissat Statement’ concludes an international meeting of renowned researchers at the inaugural Kavli Futures Symposium

With research backgrounds ranging from materials engineering to molecular biophysics, seventeen leading scientists issued a statement today announcing that, much as the discovery of DNA and creation of the transistor revolutionized science, there is a new scientific field on the brink of revolutionizing our approach to problems ranging from eco-safe energy to outbreaks of malaria.

That research area is synthetic biology – the construction or redesign of biological systems components that do not naturally exist, by combining the engineering applications and practices of nanoscience with molecular biology.

“The early twenty-first century is a time of tremendous promise and tremendous peril,” includes the statement. “We face daunting problems of climate change, energy, health, and water resources. Synthetic biology offers solutions to these issues: microorganisms that convert plant matter to fuels or that synthesize new drugs or target and destroy rogue cells in the body.”

The two-page statement calls for an international effort to advance synthetic biology that would not only propel research, but do so while developing protective measures against accidents and abuses of synthetic biology.

The statement was issued following the conclusion of the first Kavli Futures Symposium, held June 11-15 in Ilulissat, Greenland. Signed unanimously, signatories include scientists from the California Institute of Technology, Carnegie Institution of Washington, Cornell University, J. Craig Venter Institute, Lawrence Berkeley National Laboratory, the Institute for Advanced Study, Massachusetts Institute of Technology, Princeton University, Stanford University, and University of California at Berkeley (United States); Ecole Normale Superieure (France); Delft University of Technology (The Netherlands); Max Planck Institute of Molecular Cell Biology and Genetics, TU Dresden (Germany); Weizman Institute of Science (Israel); Systems Biology Institute, and Sony Computer Science Laboratories (Japan).

“When we gathered at the Kavli Futures Symposium, researchers – among the best in their fields – in areas such as nanoscience, physics, biology, materials science and engineering met to share their expertise and brainstorm on one of the most promising yet controversial fields facing science today,” said Cees Dekker, professor of molecular biophysics in the Kavli Institute of NanoScience at the Delft University of Technology. “That we not only achieved a consensus, but resolved to issue a unanimous statement on the critical importance of this field is significant.”

The statement also addresses the uncertainties of synthetic biology. “As with any powerful technology, the promise comes with risk. We need to develop protective measures against accidents and abuses of synthetic biology. A system of best practices must be established to foster positive uses of the technology and suppress negative ones. The risks are real; but the potential benefits are truly extraordinary.”

The statement’s recommendations include creation of a professional organization that will engage with the broader society to maximize the benefits, minimize the risks, and oversee the ethics of synthetic life.

“This is a critical moment for synthetic biology,” said Paul McEuen, professor of physics, Cornell University. “The choices facing us now – the scientific investments we make and the rules we set down to govern the field – will impact society for decades to come.”

The symposium was sponsored by The Kavli Foundation and co-hosted and organized by The Kavli Institute at Cornell for Nanoscience and The Kavli Institute of Nanoscience at Delft University of Technology. “This is the first of a series of unique symposia that focus on the trends, challenges and opportunities for future scientific research,” said David Auston, president of the Kavli Foundation. “By emphasizing a forward looking perspective, the Kavli Futures Symposia provide a forum for discussion of the key issues facing future developments and directions in specific fields, and thereby help to define and guide the development of the research in these fields.”

Said Fred Kavli, founder of The Kavli Foundation, “I am delighted at the success of this inaugural symposium, which has not only taken a look into the future of science, but provided the first steps toward navigating a successful journey into an exciting and challenging new frontier.”

NOTE: The complete text of the Ilulissat Statement can be found at: http://www.kavlifoundation.org/news/pr_062507.html

Statement Signatories
France
David Bensimon, Ecole Normale Superieure
Germany
Joe Howard, Max Planck Institute of Molecular Cell Biology and Genetics
Petra Schwille, TU Dresden
Israel
Ehud Shapiro, Weizman Institute of Science
Japan
Hiroaki Kitano, Systems Biology Institute, and Sony Computer Science Laboratories
The Netherlands
Cees Dekker, Delft University of Technology
United States
Robert Austin, Princeton University
Angela Belcher, Massachusetts Institute of Technology
Steven Chu, Lawrence Berkeley National Laboratory
Freeman Dyson, Institute for Advanced Study
Drew Endy, Massachusetts Institute of Technology
Scott Fraser, California Institute of Technology
John Glass, J. Craig Venter Institute
Robert Hazen, Carnegie Institution of Washington
Jay Keasling, University of California at Berkeley
Paul McEuen, Cornell University
Julie Theriot, Stanford University
For further information about the Ilulissat Statement, or about The Kavli Futures Symposium “The merging of bio and nano: towards cyborg cells”:
Prof. Cees Dekker
Kavli Institute of NanoScience, Delft University of Technology, The Netherlands
Phone: +31 15 278 6094
Email: c.dekker@tudelft.nl
Prof. Paul McEuen
The Kavli Institute at Cornell for Nanoscience, Cornell University, USA
Phone: 607-255-5193
Email: mceuen@ccmr.cornell.edu

Frank Nuijens | alfa
Further information:
http://www.kavlifoundation.org/news/pr_062507.html

Further reports about: California Futures Max Planck Institute synthetic

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>