Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer modeling could help chlorine-hungry bacteria break down toxic waste

22.06.2007
Cornell researchers hope to learn how certain bacteria that break down pollutants do their job and then to make them more effective in cleaning up toxic wastes.
Bacteria called Dehalococcoides ethenogenes, discovered in Ithaca sewage sludge in 1997 by James Gossett, Cornell professor of civil and environmental engineering, and isolated and studied by Stephen Zinder, Cornell professor of microbiology, are now in wide use to detoxify such carcinogenic chemicals as perchloroethylene (PCE) and trichloroethylene (TCE). They do this by removing chlorine atoms from molecules and leaving less-toxic compounds behind.

But D. ethenogenes strains work well at some sites and not so well at others, and nobody knows for sure why. In fact, very little is understood about how these organisms live and breathe. Normal laboratory procedures haven't provided enough answers, because the bacteria are hard to grow in a petri dish, said Ruth Richardson, Cornell assistant professor of civil and environmental engineering, who is following up on Gossett's and Zinder's work, in continued collaboration with them.

She is partnering with Gene Network Sciences (GNS), a firm specializing in computer simulation of biochemical processes, to create computer models of the inner workings of the bacterium. The project is funded by a three-year, $381,000 grant from the Department of Defense, which has some 6,000 toxic-dump sites of its own to clean up.

Richardson explained that in the field "the bacteria sometimes start and then stop. We might improve conditions for the organisms." For example, she said, it has been found that Dehalococcoides needs vitamin B-12, so the vitamin is added to cultures that are injected into cleanup sites. The bacterium also grows better in a mixed community with other kinds of bacteria. "There are some factors it needs from other organisms, and we don't know yet what they are," she said.

... more about:
»Condition »computer model »pollutants »strain

Her laboratory will test the D. ethenogenes strains under a variety of different conditions, such as exposing them to different chlorinated compounds one at a time, varying the environment or the nutrients supplied, and then observing which genes are expressed and what proteins are manufactured. The data will go to GNS, which will try to build computer models of how the bacteria's proteins work together under each condition and whether the pathway for each condition is the same for PCE and TCE, and if not, what steps they have in common.

It will be an "iterative process," Richardson said. If a model shows that changing a particular condition produces a particular result, the lab will try it out and see if the result matches the model. Eventually, Richardson said, some commonalities should appear.

"There will be a suite of models, and we can highlight features that are common across several models," she said. "As we develop the model, we can begin to look at the genomes of other strains of Dehalococcoides. If genes that are important in our strain are found in others ... then we can do the same experiments with the others." Finding which genes are at work with which pollutants might lead to understanding how to remediate other kinds of pollutants, such as PCBs, dioxins, chlorobenzenes or chlorophenols.

Richardson, who grew up in the Hudson River Valley, notes that such pollutants are common in the river's harbors. "There are still thousands of sites around the country that need to be cleaned up," she said. "Ithaca has three or four, and that's not atypical."

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: Condition computer model pollutants strain

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>