Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison engineers develop higher-energy liquid-transportation fuel from sugar

21.06.2007
Plants absorb carbon dioxide from the air and combine it with water molecules and sunshine to make carbohydrate or sugar. Variations on this process provide fuel for all of life on Earth.

Reporting in the June 21 issue of the journal Nature, University of Wisconsin-Madison chemical and biological engineering Professor James Dumesic and his research team describe a two-stage process for turning biomass-derived sugar into 2,5-dimethylfuran (DMF), a liquid transportation fuel with 40 percent greater energy density than ethanol.

The prospects of diminishing oil reserves and the threat of global warming caused by releasing otherwise trapped carbon into the atmosphere have researchers searching for a sustainable, carbon-neutral fuel to reduce global reliance on fossil fuels. By chemically engineering sugar through a series of steps involving acid and copper catalysts, salt and butanol as a solvent, UW-Madison researchers created a path to just such a fuel.

Currently, ethanol is the only renewable liquid fuel produced on a large scale," says Dumesic. "But ethanol suffers from several limitations. It has relatively low energy density, evaporates readily, and can become contaminated by absorption of water from the atmosphere. It also requires an energy-intensive distillation process to separate the fuel from water."

... more about:
»DMF »Energy »Ethanol »HMF »catalyst

Not only does dimethylfuran have higher energy content, it also addresses other ethanol shortcomings. DMF is not soluble in water and therefore cannot become contaminated by absorbing water from the atmosphere. DMF is stable in storage and, in the evaporation stage of its production, consumes one-third of the energy required to evaporate a solution of ethanol produced by fermentation for biofuel applications.

Dumesic and graduate students Yuriy Román-Leshkov, Christopher J. Barrett and Zhen Y. Liu developed their new catalytic process for creating DMF by expanding upon earlier work. As reported in the June 30, 2006, issue of the journal Science, Dumesic's team improved the process for making an important chemical intermediate, hydroxymethylfurfural (HMF), from sugar.

Industry uses millions of tons of chemical intermediates, largely sourced from petroleum or natural gas, as the raw material for many modern plastics, drugs and fuels.

The team's method for making HMF and converting it to DMF is a balancing act of chemistry, pressure, temperature and reactor design. Fructose is initially converted to HMF in water using an acid catalyst in the presence of a low-boiling-point solvent. The solvent extracts HMF from water and carries it to a separate location. Although other researchers had previously converted fructose to HMF, Dumesic's research group made a series of improvements that raised the HMF output and made the HMF easier to extract. For example, the team found that adding salt (NaCl) dramatically improves the extraction of HMF from the reactive water phase and helps suppress the formation of impurities.

In the June 21, 2007, issue of Nature, Dumesic's team describes its process for converting HMF to DMF over a copper-based catalyst. The conversion removes two oxygen atoms from the compound lowering the boiling point, the temperature at which a liquid turns to gas, and making it suitable for use as transportation fuel. Salt, while improving the production of HMF, presented an obstacle in the production of DMF. It contributed chloride ions that poisoned the conventional copper chromite catalyst. The team instead developed a copper-ruthenium catalyst providing chlorine resistance and superior performance.

Dumesic says more research is required before the technology can be commercialized. For example, while its environmental health impact has not been thoroughly tested, the limited information available suggests DMF is similar to other current fuel components.

"There are some challenges that we need to address," says Dumesic, "but this work shows that we can produce a liquid transportation fuel from biomass that has energy density comparable to petrol."

James Dumesic | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: DMF Energy Ethanol HMF catalyst

More articles from Life Sciences:

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

nachricht When fish swim in the holodeck
22.08.2017 | University of Vienna

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>