Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A faster way to recover from chemotherapy and marrow transplant

21.06.2007
Discovery in zebrafish could lead to new ways of boosting patients' blood cells

Researchers at Children’s Hospital Boston report finding a new way to increase stem cells in blood, suggesting a possible treatment to help patients who undergo chemotherapy or bone marrow transplant for leukemia and other cancers recover their immune function more quickly. In the June 21 issue of Nature, they demonstrate that a stable analog of prostaglandin can enhance the blood-forming system, both during embryonic development and after it’s been damaged.

The discovery, made possible through high-volume drug screening in zebrafish, marks the first time stem-cell production has been induced by a small-molecule drug, says the study’s senior author, Leonard Zon, MD, of the Children’s Hospital Boston Stem Cell Program and Division of Hematology/Oncology. Other studies, including one from Zon's own lab*, have identified ways of increasing formation of blood stem cells, which give rise to each of the body’s various blood cell types. However, the methods are technically complex and haven’t lent themselves to broad medical use.

The hospital now hopes to conduct a clinical trial of the drug, a long-active derivative of prostaglandin E2 known as dmPGE2. This compound was originally tested more than 20 years ago for patients with gastritis, but was never marketed as a drug.

Currently, patients undergoing bone marrow transplant must wait for marrow from a matched donor to replenish their stem cells and reproduce the full array of blood cell types, including all the cells of the immune system. When there’s no suitable donor for a marrow match, patients can receive umbilical cord blood, which also contains blood stem cells. But the number of stem cells in one cord of blood is often not adequate for older children and adults, leaving them with diminished immune function and high risk for infections.

Zon and colleagues Trista North, PhD, and Wolfram Goessling, MD, PhD, both also of Children’s Stem Cell Program, zeroed in on dmPGE2 by screening more than 2,500 chemicals in zebrafish. Knowing that two genes, runx1 and cmyb, are required for blood stem cells to develop in vertebrate embryos, they looked for compounds that altered the expression (activation) of these genes. North spent six months placing 15,000+ tiny embryos in wells, each containing a different chemical – five embryos to a well, 48 wells to a plate – then checking each embryo 24 hours later to monitor its development and count its blood stem cells.

The screen identified 82 chemicals that markedly increased or decreased gene activity. Of these, 10 turned out to affect the prostaglandin pathway: five increased the formation of blood stem cells, and five decreased it. “We weren’t specifically looking for prostaglandins,” says Zon, a Howard Hughes Medical Institute investigator who is also a member of the Harvard Stem Cell Institute. “This was a surprise finding.”

A variety of experiments confirmed that prostaglandins, particularly dmPGE2, promote blood stem cell formation, while chemicals that block prostaglandin synthesis (such as aspirin or ibuprofen), suppress blood stem cell formation. Finally, in zebrafish whose marrow was depleted by irradiation, those given dmPGE2 recovered blood cell populations more quickly.

Prostaglandins are known to be released by the body when inflammation is present – such as after an injury – and may be among the compounds that aid recovery. “So it makes some sense that prostaglandins would have the ability to enhance regrowth of cells,” Zon says.

“The zebrafish is ideal for investigating blood formation,” says North. “It reproduces quickly and in large number and has a blood-forming system that shares many similarities with that of mammals.” Zebrafish embryos develop outside the mother’s body and can take up chemicals through their skin, making it easy to test the developmental effects of large numbers of compounds very rapidly, while their transparent skin makes it possible to visualize the blood stem cells in live fish.

The researchers also confirmed their observations in mammalian models. When dmPGE2 was added to mouse embryonic stem cells in the lab, production of blood stem cells increased. In mice that underwent bone marrow transplant, treatment with dmPGE2 led to enhanced blood-stem-cell formation, and the stem cells remained present in the marrow more than six months after transplantation, indicating long-term engraftment. “The fact that we confirmed the zebrafish discovery in a mammalian system suggests it may also be applicable in humans,” says Goessling.

The clinical trial, projected to begin in 2008 at Children’s Hospital Boston in conjunction with the Dana-Farber/Harvard Cancer Center, will recruit patients undergoing cord blood transplant for leukemia. Patients will receive cord blood to replenish their blood systems, some of it treated with dmPGE2 to enhance blood-stem-cell formation. “Having more stem cells should help the blood system to regrow faster and minimize complications, such as infections,” says North.

Anna Gonski | EurekAlert!
Further information:
http://www.childrenshospital.org/newsroom

Further reports about: Embryo Prostaglandin dmPGE2 marrow recover transplant zebrafish

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>