Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Invertebrate immune systems are anything but simple, conference finds

A hundred years since Russian microbiologist Elie Metschnikow first discovered the invertebrate immune system, scientists are only just beginning to understand its complexity. Presenting their findings at a recent European Science Foundation (ESF) conference, scientists showed that invertebrates have evolved elaborate ways to fight disease.

By studying starfish, Metschnikow was the first to see cells digesting bacteria, a process he called phagocytosis (the eating of cells by other cells). Phagocytosis, it turns out, is an important immune defence in all living things. Since Metschnikow's work, scientists have studied the immune systems of simpler organisms (such as invertebrates) in the hope of understanding the immune systems of more complex organisms, like us.

However, invertebrates' immune systems are more elaborate than we expected. "We have underestimated the complexity of invertebrate immunity," says Dr. Paul Schmid-Hempel, an evolutionary ecologist at the ETH Zurich in Switzerland. By studying the immune systems of fruit flies, mosquitoes and other invertebrates (including bed bugs, moths, crustaceans, worms, sponges and bees), scientists are finding new molecules involved in defences against pathogens (microbes that cause disease).

One molecule found in fruit flies, Dscam, is capable of folding itself in 18,000 different ways. Computer models that predict the structure of this molecule have led scientists to suggest that this folding creates different shapes, each capable of binding to different structures on the pathogen's surface. "These molecules can be used very flexibly by assembling their components in many ways," says Schmid-Hempel. Until now, this ability to recognize specific pathogens was thought to be limited to vertebrates.

In another exciting area of research, scientists showed the sophisticated ways that invertebrates manage their immune systems. "Insects recognise peptidoglycan [a component of bacterial cell wall] and this triggers a rapid immune response" explains Schmid-Hempel. However, once the bacteria have been killed, molecules digest peptidoglycans and therefore dampen down the immune response. Regulating the immune response in this way is important because immune systems, if left unchecked, can harm an individual by mistakenly attacking cells in the body.

In humans, the failure of the body to recognise itself results in autoimmune diseases. For example, Crohn's disease is the failure of the body to recognize intestinal cells, resulting in an immune response against these cells. Understanding these autoimmune processes in invertebrates might help us to better engineer drugs to tackle these debilitating diseases in humans.

Insects can also boost their immune systems ready for a pathogen invasion. Female bedbugs, which are often wounded during mating, enhance their immune system prior to mating in anticipation of pathogen invasion. Similarly, bumblebees maintain their immune systems in an enhanced state following a pathogen attack to counter future infections. "This can even cross generations, with mothers transferring immunity to their offspring" says Schmid-Hempel. This delicate management of immune responses has until now been regarded as a characteristic of vertebrates.

Schmid-Hempel thinks that the molecular mechanisms found in invertebrate immune systems may rival those seen in the vertebrate world. He says: "Insects use different cells and molecules, but follow very similar principles for detecting pathogens as vertebrates."

And scientists are only beginning to understand the elaborate ways that invertebrates respond to pathogens. As they discover new molecules, the invertebrate immune system could turn out to be much more like that of vertebrates - making it an even better model for the study of our own immune system.

The impact on innate immunity: at the defence frontier - the biology of innate immunity conference was organised by the ESF Research Conferences Scheme and was attended by 90 immunologists and evolutionary ecologists. It was held at the University of Innsbruck Conference Centre in Obergurgl, Ötz Valley, Austria on 19-24 May 2007. The conference appealed to an international audience, drawing scientists from mainland Europe (Kenneth Söderhäll, Uppsala University, Sweden), Britain (Andrew Read, University of Edinburgh, Scotland), and the Canada (Shelley Adamo, Dalhousie University, Nova Scotia, CA). This conference was organised by ESF in partnership with the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (FWF) and the Leopold-Franzens-Universität Innsbruck (LFUI).

The European Science Foundation, which is based in Strasbourg, France, is an association of 75 member organisations from 30 European countries. Since its inception in 1974, it has co-ordinated a wide range of pan-European scientific initiatives.

Thomas Lau | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>