Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tumour markers: “Spot the differences”

21.06.2007
The term “cancer” (from the Greek karkinos, which means sea crab) was used for the first time by Greek doctor Hippocrates five hundred years b.C. to define the tumours that he observed in his patients. Nowadays it is still difficult to diagnose, and prognosis is bad. Cancer is already the main cause of death in many countries, ranking even above cardiovascular diseases.

Pancreatic cancer (PC), the subject of this thesis, has the poorest prognosis of all cancers: the survival rate after five years with the disease is less than 5% and on average, patients who have been diagnosed with it do not live longer than six months.

The modus operandi of cells is well known: the genes (DNA) are the masterminds of the system and their role is to give orders. Those orders are transmitted in the form of messages (RNA), which ultimately become molecules that do the work (proteins). Since all cells have similar genes, they are all able to give the same range of orders. However, depending on their role and the signs and information they receive from their surroundings, each cell type sends only specific messages at any one time. While in normal cells this process is carried out following an organized pattern, this pattern of messages changes completely in cancer cells. When pancreatic cells transform into cancer cells, they abandon their usual functions and start sending abnormal messages, which encourage them to quickly divide and invade nearby tissues.

The aim of this PhD was to intercept messages sent by cancerous pancreatic cells and compare them with those sent by healthy pancreatic cells. This comparison would indicate which orders (messages) are the ones that make the cancer grow and invade and which weapons (proteins) it uses to do so. In order to carry out this work we used microarrays or DNA-chips, a technique used for multiple analyses. It allows the detection and quantification of messages sent by thousands of genes. We analysed biopsies of PC as well as samples of healthy pancreas. The RNA (thousands of messages sent by cells) from each sample was extracted and fluorescently labelled. The RNA has the ability to join complementary DNA. The organized DNA fragments contained on a microarray can detect all possible messages sent by the nearly 30,000 genes that exist in the human genome. When RNA is exposed to the microarray, each message binds to its matching DNA, producing fluorescent signal.

... more about:
»DNA »Marker »RNA »pancreatic »tumour

The next step was to compare the images obtained from tumour cells with the ones from normal cells. As we do when we solve “Spot the difference” puzzles, we try to find out what makes drawing A different from drawing B; in this case, which messages are being sent by cancerous cells but not by normal cells. However, here we do not have easy drawings with just a few lines as in a puzzle (Figure A). Instead, we compare complex images with hundreds of thousands of different intensity points. In our study we identified a total of 116 messages that were over-expressed in cancerous cells.

These findings reveal some of the orders that allow pancreatic tumours to grow quickly, feed and invade other tissues. Additionally, these messages and the proteins for which they code are potential diagnostic markers and targets to tackle when developing new anti-cancer treatments.

Finally, we generated antibodies that detect the proteins coded by some of the messages. Using a microscope and colour-labelled antibodies, we managed to dye PC cells and to distinguish them from cells of a healthy pancreas or a pancreas with chronic pancreatitis (Fig. B). These results indicate the usefulness of this marker and establish the basis for the development of a differential diagnostic system for PC.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/tesia_irakurri.asp?hizk=E&Kodea=104&irak_hizk=_I&lehiaketa_urtea=2007

Further reports about: DNA Marker RNA pancreatic tumour

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>