Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tumour markers: “Spot the differences”

21.06.2007
The term “cancer” (from the Greek karkinos, which means sea crab) was used for the first time by Greek doctor Hippocrates five hundred years b.C. to define the tumours that he observed in his patients. Nowadays it is still difficult to diagnose, and prognosis is bad. Cancer is already the main cause of death in many countries, ranking even above cardiovascular diseases.

Pancreatic cancer (PC), the subject of this thesis, has the poorest prognosis of all cancers: the survival rate after five years with the disease is less than 5% and on average, patients who have been diagnosed with it do not live longer than six months.

The modus operandi of cells is well known: the genes (DNA) are the masterminds of the system and their role is to give orders. Those orders are transmitted in the form of messages (RNA), which ultimately become molecules that do the work (proteins). Since all cells have similar genes, they are all able to give the same range of orders. However, depending on their role and the signs and information they receive from their surroundings, each cell type sends only specific messages at any one time. While in normal cells this process is carried out following an organized pattern, this pattern of messages changes completely in cancer cells. When pancreatic cells transform into cancer cells, they abandon their usual functions and start sending abnormal messages, which encourage them to quickly divide and invade nearby tissues.

The aim of this PhD was to intercept messages sent by cancerous pancreatic cells and compare them with those sent by healthy pancreatic cells. This comparison would indicate which orders (messages) are the ones that make the cancer grow and invade and which weapons (proteins) it uses to do so. In order to carry out this work we used microarrays or DNA-chips, a technique used for multiple analyses. It allows the detection and quantification of messages sent by thousands of genes. We analysed biopsies of PC as well as samples of healthy pancreas. The RNA (thousands of messages sent by cells) from each sample was extracted and fluorescently labelled. The RNA has the ability to join complementary DNA. The organized DNA fragments contained on a microarray can detect all possible messages sent by the nearly 30,000 genes that exist in the human genome. When RNA is exposed to the microarray, each message binds to its matching DNA, producing fluorescent signal.

... more about:
»DNA »Marker »RNA »pancreatic »tumour

The next step was to compare the images obtained from tumour cells with the ones from normal cells. As we do when we solve “Spot the difference” puzzles, we try to find out what makes drawing A different from drawing B; in this case, which messages are being sent by cancerous cells but not by normal cells. However, here we do not have easy drawings with just a few lines as in a puzzle (Figure A). Instead, we compare complex images with hundreds of thousands of different intensity points. In our study we identified a total of 116 messages that were over-expressed in cancerous cells.

These findings reveal some of the orders that allow pancreatic tumours to grow quickly, feed and invade other tissues. Additionally, these messages and the proteins for which they code are potential diagnostic markers and targets to tackle when developing new anti-cancer treatments.

Finally, we generated antibodies that detect the proteins coded by some of the messages. Using a microscope and colour-labelled antibodies, we managed to dye PC cells and to distinguish them from cells of a healthy pancreas or a pancreas with chronic pancreatitis (Fig. B). These results indicate the usefulness of this marker and establish the basis for the development of a differential diagnostic system for PC.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/tesia_irakurri.asp?hizk=E&Kodea=104&irak_hizk=_I&lehiaketa_urtea=2007

Further reports about: DNA Marker RNA pancreatic tumour

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>