Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Enzymes Work: UB Chemists Publish A Major Discovery

20.06.2007
In a publication selected as a "2007 Hot Article" by the journal Biochemistry, University at Buffalo chemists report the discovery of a central mechanism responsible for the action of the powerful biological catalysts known as enzymes.

The UB research provides critical insight into why catalysis is so complex and may help pave the way for improving the design of synthetic catalysts.

"The more that is known about catalysis, the better chances we have of designing active catalysts," said John P. Richard, Ph.D., professor of chemistry in the UB College of Arts and Sciences and co-author of the paper with Tina L. Amyes, Ph.D., UB adjunct associate professor of chemistry.

"Attempts to replicate evolution and design catalysts of non-biological reactions with enzyme-like activity have failed, because scientists have yet to unravel the secrets of enzyme catalysis," Richard said.

But, he said, these secrets, once revealed, have the potential to transform the chemical industry in processes ranging from soft-drink manufacturing to the production of ethanol and countless other industrial processes.

"Enzymes are the products of billions of years of cellular evolution," he said.

While attempts to design catalysts have been somewhat successful, the catalysis that results is far less efficient than that produced by reactions with enzymes.

Richard explained that protein catalysts are distinguished by their enormous molecular weights, ranging from 10,000 to greater than 1,000,000 Daltons, whereas a synthetic molecule with a weight of 1,000 would be considered large.

The recent results by Richard and Amyes provide critical insight into why effective catalysis requires such large molecules.

Catalysis starts with molecular recognition of the substrate by the catalyst, Richard explained.

The so-called "catalytic" recognition is limited in man-made catalysts to several atoms that participate in the chemical reaction.

Amyes and Richard have provided compelling evidence that interactions between enzymes and non-reacting portions of the substrate are critical for large catalytic rate accelerations.

"These findings demonstrate a simple principle of catalysis that is important for many enzymes that catalyze reactions of substrates containing phosphate groups and which can be generalized to all enzymes," said Richard.

He explained that the chemistry between a catalyst and substrate occurs where groups of amino acid residues interact with the substrate.

But enzymes also have domains that interact with the non-reacting parts of the substrate, he continued.

"A flexible loop on the enzyme wraps around the substrate, burying it in an environment that's favorable for catalysis," he said. "In order to bury the substrate, certain interactions are necessary that allow the loop to wrap around the substrate and that's what the phosphate groups on the substrate are doing."

The UB research demonstrates just how important this process is to catalysis.

"We've shown that these interactions are critical to the process of making reactions faster," said Richard.

The critical experiment by the UB researchers was to clip the covalent bond that links the phosphate groups to the substrate.

"We have found that the interactions between phosphate groups and several enzymes are used to promote the chemistry even in the absence of a covalent linkage," said Richard. "These results have surprised many enzymologists."

To conduct the research, Richard and Amyes developed a specialized and technically difficult assay for enzyme activity that uses nuclear magnetic resonance spectroscopy to detect chemical reactions that would normally be invisible.

Richard and Amyes have applied their method during the past 10 years to a wide variety of chemical and enzymatic reactions with results published in approximately 25 papers in Biochemistry and The Journal of the American Chemical Society. Richard's work on enzymes has been supported continuously since 1987 by grants from the National Institutes of Health.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

Further reports about: Amyes Catalysis Substrate catalyst enzyme interactions phosphate

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>