Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Enzymes Work: UB Chemists Publish A Major Discovery

20.06.2007
In a publication selected as a "2007 Hot Article" by the journal Biochemistry, University at Buffalo chemists report the discovery of a central mechanism responsible for the action of the powerful biological catalysts known as enzymes.

The UB research provides critical insight into why catalysis is so complex and may help pave the way for improving the design of synthetic catalysts.

"The more that is known about catalysis, the better chances we have of designing active catalysts," said John P. Richard, Ph.D., professor of chemistry in the UB College of Arts and Sciences and co-author of the paper with Tina L. Amyes, Ph.D., UB adjunct associate professor of chemistry.

"Attempts to replicate evolution and design catalysts of non-biological reactions with enzyme-like activity have failed, because scientists have yet to unravel the secrets of enzyme catalysis," Richard said.

But, he said, these secrets, once revealed, have the potential to transform the chemical industry in processes ranging from soft-drink manufacturing to the production of ethanol and countless other industrial processes.

"Enzymes are the products of billions of years of cellular evolution," he said.

While attempts to design catalysts have been somewhat successful, the catalysis that results is far less efficient than that produced by reactions with enzymes.

Richard explained that protein catalysts are distinguished by their enormous molecular weights, ranging from 10,000 to greater than 1,000,000 Daltons, whereas a synthetic molecule with a weight of 1,000 would be considered large.

The recent results by Richard and Amyes provide critical insight into why effective catalysis requires such large molecules.

Catalysis starts with molecular recognition of the substrate by the catalyst, Richard explained.

The so-called "catalytic" recognition is limited in man-made catalysts to several atoms that participate in the chemical reaction.

Amyes and Richard have provided compelling evidence that interactions between enzymes and non-reacting portions of the substrate are critical for large catalytic rate accelerations.

"These findings demonstrate a simple principle of catalysis that is important for many enzymes that catalyze reactions of substrates containing phosphate groups and which can be generalized to all enzymes," said Richard.

He explained that the chemistry between a catalyst and substrate occurs where groups of amino acid residues interact with the substrate.

But enzymes also have domains that interact with the non-reacting parts of the substrate, he continued.

"A flexible loop on the enzyme wraps around the substrate, burying it in an environment that's favorable for catalysis," he said. "In order to bury the substrate, certain interactions are necessary that allow the loop to wrap around the substrate and that's what the phosphate groups on the substrate are doing."

The UB research demonstrates just how important this process is to catalysis.

"We've shown that these interactions are critical to the process of making reactions faster," said Richard.

The critical experiment by the UB researchers was to clip the covalent bond that links the phosphate groups to the substrate.

"We have found that the interactions between phosphate groups and several enzymes are used to promote the chemistry even in the absence of a covalent linkage," said Richard. "These results have surprised many enzymologists."

To conduct the research, Richard and Amyes developed a specialized and technically difficult assay for enzyme activity that uses nuclear magnetic resonance spectroscopy to detect chemical reactions that would normally be invisible.

Richard and Amyes have applied their method during the past 10 years to a wide variety of chemical and enzymatic reactions with results published in approximately 25 papers in Biochemistry and The Journal of the American Chemical Society. Richard's work on enzymes has been supported continuously since 1987 by grants from the National Institutes of Health.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

Further reports about: Amyes Catalysis Substrate catalyst enzyme interactions phosphate

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>