Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Enzymes Work: UB Chemists Publish A Major Discovery

20.06.2007
In a publication selected as a "2007 Hot Article" by the journal Biochemistry, University at Buffalo chemists report the discovery of a central mechanism responsible for the action of the powerful biological catalysts known as enzymes.

The UB research provides critical insight into why catalysis is so complex and may help pave the way for improving the design of synthetic catalysts.

"The more that is known about catalysis, the better chances we have of designing active catalysts," said John P. Richard, Ph.D., professor of chemistry in the UB College of Arts and Sciences and co-author of the paper with Tina L. Amyes, Ph.D., UB adjunct associate professor of chemistry.

"Attempts to replicate evolution and design catalysts of non-biological reactions with enzyme-like activity have failed, because scientists have yet to unravel the secrets of enzyme catalysis," Richard said.

But, he said, these secrets, once revealed, have the potential to transform the chemical industry in processes ranging from soft-drink manufacturing to the production of ethanol and countless other industrial processes.

"Enzymes are the products of billions of years of cellular evolution," he said.

While attempts to design catalysts have been somewhat successful, the catalysis that results is far less efficient than that produced by reactions with enzymes.

Richard explained that protein catalysts are distinguished by their enormous molecular weights, ranging from 10,000 to greater than 1,000,000 Daltons, whereas a synthetic molecule with a weight of 1,000 would be considered large.

The recent results by Richard and Amyes provide critical insight into why effective catalysis requires such large molecules.

Catalysis starts with molecular recognition of the substrate by the catalyst, Richard explained.

The so-called "catalytic" recognition is limited in man-made catalysts to several atoms that participate in the chemical reaction.

Amyes and Richard have provided compelling evidence that interactions between enzymes and non-reacting portions of the substrate are critical for large catalytic rate accelerations.

"These findings demonstrate a simple principle of catalysis that is important for many enzymes that catalyze reactions of substrates containing phosphate groups and which can be generalized to all enzymes," said Richard.

He explained that the chemistry between a catalyst and substrate occurs where groups of amino acid residues interact with the substrate.

But enzymes also have domains that interact with the non-reacting parts of the substrate, he continued.

"A flexible loop on the enzyme wraps around the substrate, burying it in an environment that's favorable for catalysis," he said. "In order to bury the substrate, certain interactions are necessary that allow the loop to wrap around the substrate and that's what the phosphate groups on the substrate are doing."

The UB research demonstrates just how important this process is to catalysis.

"We've shown that these interactions are critical to the process of making reactions faster," said Richard.

The critical experiment by the UB researchers was to clip the covalent bond that links the phosphate groups to the substrate.

"We have found that the interactions between phosphate groups and several enzymes are used to promote the chemistry even in the absence of a covalent linkage," said Richard. "These results have surprised many enzymologists."

To conduct the research, Richard and Amyes developed a specialized and technically difficult assay for enzyme activity that uses nuclear magnetic resonance spectroscopy to detect chemical reactions that would normally be invisible.

Richard and Amyes have applied their method during the past 10 years to a wide variety of chemical and enzymatic reactions with results published in approximately 25 papers in Biochemistry and The Journal of the American Chemical Society. Richard's work on enzymes has been supported continuously since 1987 by grants from the National Institutes of Health.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

Further reports about: Amyes Catalysis Substrate catalyst enzyme interactions phosphate

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>