Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute scientists develop a general 'control switch' for protein activity

20.06.2007
The method may be used in biomedical research, and in the future could be used in gene therapy and in genetic engineering of plants

Our bodies could not maintain their existence without thousands of proteins performing myriad vital tasks within cells. Since malfunctioning proteins can cause disease, the study of protein structure and function can lead to the development of drugs and treatments for numerous disorders. For example, the discovery of insulin’s role in diabetes paved the way for the development of a treatment based on insulin injections. Yet, despite enormous research efforts led by scientists worldwide, the cellular function of numerous proteins is still unknown. To reveal this function, scientists perform various genetic manipulations to increase or, conversely, decrease the production of a certain protein, but existing manipulations of this sort are complicated and do not fully meet the researchers’ needs.

Prof. Mordechai “Moti” Liscovitch and graduate student Oran Erster of the Weizmann Institute’s Biological Regulation Department, together with Dr. Miri Eisenstein of Chemical Research Support, have recently developed a unique “switch” that can control the activity of any protein, raising it several-fold or stopping it almost completely. The method provides researchers with a simple and effective tool for exploring the function of unknown proteins, and in the future the new technique may find many additional uses.

The switch has a genetic component and a chemical component: Using genetic engineering, the scientists insert a short segment of amino acids into the amino acid sequence making up the protein. This segment is capable of binding strongly and selectively to a particular chemical drug, which affects the activity level of the engineered protein by increasing or reducing it. When the drug is no longer applied, or when it is removed from the system, the protein returns to its natural activity level.

As reported recently in the journal Nature Methods, the first stage of the method consists of preparing a set of genetically engineered proteins (called a “library” in scientific language) with the amino acid segment inserted in different places. In the second stage, the engineered proteins are screened to identify the ones that respond to the drug in a desired manner. The researchers have discovered that in some of the engineered proteins the drug increased the activity level, while in others this activity was reduced. Says Prof. Liscovitch: “We were surprised by the effectiveness of the method – it turns out that a small set of engineered proteins is needed to find the ones that respond to the drug. With their greater resources, biotechnology companies will be able to create much larger sets of engineered proteins in order to find one that best meets their needs.”

The method developed by the Weizmann Institute scientists is ready for immediate use, both in basic biomedical research and in the pharmaceutical industry, in the search for proteins that can serve as targets for new drugs. Beyond offering a potent tool that can be applied to any protein, the method has an important advantage compared with other techniques: It allows the total and precise control over the activity of an engineered protein. Such activity can be brought to a desired level or returned to its natural level, at specific locations in the body and at specific times – all this by giving exact and well-timed doses of the same simple drug.

In addition, the method could be used one day in gene therapy. It may be possible to replace damaged proteins that cause severe diseases with genetically engineered proteins, and to control these proteins’ activity levels in a precise manner by giving appropriate doses of the drug. Another potential future application is in agricultural genetic engineering. The method might make it possible, for example, to create genetically engineered plants in which the precise timing of fruit ripening would be controlled using a substance that increases the activity of proteins responsible for ripening. Moreover, numerous proteins are used in industrial processes, as biological sensors and in other applications. The possibility of controlling these applications – strengthening or slowing the rate of protein activity in an immediate and reversible manner – can be of great value.

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

Further reports about: Control activity level amino acid engineered

More articles from Life Sciences:

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

nachricht When fish swim in the holodeck
22.08.2017 | University of Vienna

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>