Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 'acquired' DNA key to certain bacterial infection

19.06.2007
Researchers announced this week the discovery of a mechanism by which Mycobacterium avium – a bacterium which can result in serious lung infections and is prevalent in emphysema and AIDS patients among others – infects tissue cells or “macrophages” and thus compromises the body’s immunity.

Results of the study, led by researchers at Oregon State University, will be published online this week in the Proceedings of the National Academy of Sciences. Other co-authors were from the University of Nebraska.

The key to the bacterium’s ability to enter environmental amoebas – and ultimately humans – is an “island” of genetic material acquired through evolution from another bacterium, according to Luiz E. Bermudez, a professor of biomedical sciences in OSU’s College of Veterinary Medicine and an author of the study.

“Without these acquired genes, the bacterium is very inefficient in infecting environmental amoeba, which is the environmental host,” Bermudez said. “In fact, its efficiency is close to zero. But with this ‘island’ of acquired genetic material, the bacterium finds a way to get inside the cells and it takes control, not the phagocyte.”

... more about:
»Mycobacterium »amoeba »avium »bacterium

Phagocytes are cells that engulf and digest pathogens and cellular debris, and in humans serve as the body’s initial immune response.

The researchers did not find a similar island of acquired genetic material in two similar bacteria, Mycobacterium tuberculosis and Mycobacterium paratuberculosis, which causes Johne’s disease.

M. avium exists in the environment and is thought to infect humans when the infected environmental hosts – amoebas – are inhaled or swallowed.

Incidence of M. avium as a cause of syndromes may be decreasing because of changes in treatment for HIV-infected patients, according to the Centers for Disease Control and Prevention, which estimates that 1 out of 100,000 persons may be affected. However, CDC also notes that the bacterium’s resistance to antibiotics – already a problem – may be increasing. In contrast, the incidence of lung infection in patients with chronic lung diseases and cystic fibrosis is increasing.

Understanding the mechanism by how M. avium penetrates the macrophage and infects humans may eventually lead to interventions that can prevent, or at least, reduce the chance of infections, though Bermudez cautioned that it is early in the process.

“We still don’t know what most of the individual genes do,” he said, “and none of the DNA sequences match those in known databases.”

The researchers did discover that one of the genes provides coding for a protein that targets action in the host cell, which may help the bacterium survive in the macrophage.

Bermudez said the researchers learned the genetic “island” was acquired from another bacterium because of its unique nucleotide structure, which differs from its Mycobacterium cousins. Such evolution likely took place over thousands of years, he pointed out, and may have come from a pathogen which also has the ability to infect environmental amoeba.

Luiz Bermudez | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: Mycobacterium amoeba avium bacterium

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>