Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 'acquired' DNA key to certain bacterial infection

19.06.2007
Researchers announced this week the discovery of a mechanism by which Mycobacterium avium – a bacterium which can result in serious lung infections and is prevalent in emphysema and AIDS patients among others – infects tissue cells or “macrophages” and thus compromises the body’s immunity.

Results of the study, led by researchers at Oregon State University, will be published online this week in the Proceedings of the National Academy of Sciences. Other co-authors were from the University of Nebraska.

The key to the bacterium’s ability to enter environmental amoebas – and ultimately humans – is an “island” of genetic material acquired through evolution from another bacterium, according to Luiz E. Bermudez, a professor of biomedical sciences in OSU’s College of Veterinary Medicine and an author of the study.

“Without these acquired genes, the bacterium is very inefficient in infecting environmental amoeba, which is the environmental host,” Bermudez said. “In fact, its efficiency is close to zero. But with this ‘island’ of acquired genetic material, the bacterium finds a way to get inside the cells and it takes control, not the phagocyte.”

... more about:
»Mycobacterium »amoeba »avium »bacterium

Phagocytes are cells that engulf and digest pathogens and cellular debris, and in humans serve as the body’s initial immune response.

The researchers did not find a similar island of acquired genetic material in two similar bacteria, Mycobacterium tuberculosis and Mycobacterium paratuberculosis, which causes Johne’s disease.

M. avium exists in the environment and is thought to infect humans when the infected environmental hosts – amoebas – are inhaled or swallowed.

Incidence of M. avium as a cause of syndromes may be decreasing because of changes in treatment for HIV-infected patients, according to the Centers for Disease Control and Prevention, which estimates that 1 out of 100,000 persons may be affected. However, CDC also notes that the bacterium’s resistance to antibiotics – already a problem – may be increasing. In contrast, the incidence of lung infection in patients with chronic lung diseases and cystic fibrosis is increasing.

Understanding the mechanism by how M. avium penetrates the macrophage and infects humans may eventually lead to interventions that can prevent, or at least, reduce the chance of infections, though Bermudez cautioned that it is early in the process.

“We still don’t know what most of the individual genes do,” he said, “and none of the DNA sequences match those in known databases.”

The researchers did discover that one of the genes provides coding for a protein that targets action in the host cell, which may help the bacterium survive in the macrophage.

Bermudez said the researchers learned the genetic “island” was acquired from another bacterium because of its unique nucleotide structure, which differs from its Mycobacterium cousins. Such evolution likely took place over thousands of years, he pointed out, and may have come from a pathogen which also has the ability to infect environmental amoeba.

Luiz Bermudez | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: Mycobacterium amoeba avium bacterium

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>