Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reconstructing the biology of extinct species: A new approach

19.06.2007
An international research team has documented the link between the way an animal moves and the dimensions of an important part of its organ of balance, the three semicircular canals of the inner ear on each side of the skull. The team's article on its research will be published on 26 June in the print edition of the Proceedings of the National Academy of Sciences and in the journal's online early edition during the week of 18 to 22 June.

"We have shown that there is a fundamental adaptive mechanism linking a species' locomotion with the sensory systems that process information about its environment," says Alan Walker, Evan Pugh Professor of Anthropology and Biology at Penn State University, one of the team's leaders. The researchers studied 91 separate primate species, including all taxonomic families. The study also included 119 additional species, most of which are mammals ranging in size from mouse to elephant, that habitually move in diverse ways in varied environments.

The project is the first large-scale study to document the relationship of the dimensions of the semicircular canals to locomotion. These structures are filled with a fluid, which moves within the canals when the animal moves. The fluid's movement is sensed by special cells that send signals to the brain, triggering the neck and eye muscles to reflexively keep the visual image stable.

The basic hypothesis of the project was that the organ of balance -- which helps stabilize an animal's gaze and coordinate its movements as it travels through the environment -- should be irrevocably linked to the type of locomotion produced by its limbs. "If an animal evolves a new way of moving about the world, its organ of balance must evolve accordingly," Walker explains. From the visual information, the animal tracks its position relative to stationary objects such as tree trunks, branches, rocks or cliffs, or the ground. Having a stable image of the environment is especially crucial for acrobatic animals that leap, glide, or fly.

... more about:
»canal »locomotion »semicircular

To make the discovery, the scientists scanned skull samples of each species, measuring the size of each semicircular canal and calculating the radius of curvature. Most of the specimens were scanned at the Center for Quantitative Imaging at Penn State on the OMNI-X high-resolution x-ray CT scanner, which can resolve features approximately 1/100 the size of those detected by medical CT scanners. In addition, experienced field workers used personal knowledge or film of animals in the wild to classify species into one of six locomotor categories ranging from very slow and deliberate to fast and agile. The scientists then compared the canal size of each species to its category of movement.

The results revealed a highly significant statistical relationship between the radius of curvature of the semicircular canals and the species' habitual way of moving. More acrobatic species consistently have semicircular canals with a larger radius of curvature than do slower-moving ones. For example, a small, fast-moving leaper like a bushbaby has semicircular canals that are relatively and absolutely much bigger than those of the similar-sized, slow-moving loris. However, because larger animals have absolutely larger canals, the analysis had to take body size into account. The research revealed that this functional tie between the semicircular canals and locomotor pattern is evident both within the primates alone and within the entire mammalian sample.

"How an animal moves is a basic adaptation," says Walker, an expert in primate locomotion. "Now we have a way to reconstruct how extinct species moved that is completely independent of analysis of the limb structure. For the first time, we can test our previous conclusions using a new source of information."

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: canal locomotion semicircular

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>