Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potent possibilities for parasite attack: new Leishmania genome sequences highlight gene targets for treatment development

18.06.2007
A comparison of three parasite species that cause Leishmaniasis has identified a small number of genes, many new to biology, that will provide a framework to target the search for new treatments. Leishmaniasis is a devastating disease that affects about two million people each year and threatens one-fifth of the world's population and new treatments are desperately needed.

In their report in Nature Genetics, published online on Sunday 17 June 2007, the researchers compared the genomes of L. infantum and L. braziliensis, which cause life-threatening visceral and disfiguring mucocutaneous leishmaniasis, respectively, with the sequence they produced in 2005 for L. major, which causes a less severe, cutaneous form of the disease. Despite the major differences in disease type, only 200 out of more than 8000 genes present in each genome were found to be differentially distributed between the three species. This exceptionally small variation in gene content has given new insights into those processes that may determine disease severity in humans.

"Identifying factors that allow three closely related organisms to cause vastly different clinical outcomes is a major quest for researchers and in this study we have narrowed the search to a number that can be realistically studied," commented Dr Matt Berriman, senior author on the paper, from the Wellcome Trust Sanger Institute.

The researchers found only five genes in the L. major genome for which no trace could be found in the other two species. By contrast, in Plasmodium, which causes malaria, about 20% of genes differ between related species.

... more about:
»CFAS »Host »Leishmania »braziliensis »parasite

"Clearly there must have been considerable evolutionary pressure over time to maintain the structure and sequence of the Leishmania genomes - the degree of similarity between these species was unexpected," explained Professor Deborah Smith, collaborator on this project at the University of York. "Perhaps only a few parasite genes are important in determining which type of disease develops after infection and the host genome plays a major role in clinical outcome."

The results picked up another surprising finding: the team could assign a function to only one-third of the 200 genes restricted to one or two of the species.

"The genome sequences have given us a short-cut to a small number of largely novel genes," explained Dr Chris Peacock, first author on the report. "Given their lack of similarity to human genes, they present a limited repertoire of potential targets for drug and vaccine development allowing researchers to optimise the use of limited resources."

Leishmaniasis is one of the neglected diseases that desperately need new research, as WHO/TDR notes: "Treatment of visceral leishmanisis by first-line drugs is long (4 weeks), given systemically, and expensive (US$120–150)". The affordable drugs have been in use for more than half a century and drug resistance is rife, creating a desperate need for new treatments. Biological studies for the function of 50% of Leishmania genes are lacking, so this comparative genome study provides a route to find those that might be essential to each species.

One potential target is the CFAS gene that codes for cyclopropane fatty acid synthase, an enzyme that may be involved in producing components of the cell membrane. CFAS is present in the genomes of L. braziliensis and L. infantum, but is absent from the human genome. The parasite genes are thought to have been acquired from bacterial species that have very similar sequences.

"CFAS is involved in virulence and persistence in Mycobacterium, causative agent of tuberculosis, so the identification of a CFAS gene in Leishmania raises the exciting possibility that some virulence factors are conserved between bacterial and eukaryotic intracellular pathogens," said Jeremy Mottram, a collaborator on the project who is a Professor in the Wellcome Centre for Molecular Parasitology at the University of Glasgow.

Some families of genes that determine the properties of the parasite cell surface have grown in number and some declined among the three species: 'death' of genes seems to be a major force for differences between the parasite genomes. Some genes, however, are evolving rapidly, leading the team to suspect they include key genes involved in interacting with the human host - where the battle between parasite and patient is fought and where rapid response is important to both.

Remarkably, L. braziliensis, the most ancient Leishmania species sequenced, contains genes that could provide a working pathway for RNAi, an emerging mechanism for gene regulation. The genome sequences show that components for this pathway are absent from the other two Leishmania species. This pathway might serve as an experimental tool in understanding the role of the many genes whose function is unknown, by using experimentally induced RNAi to 'knock-down' gene activity prior to host infection.

"In addition to their function with respect to promoting diverse clinical outcomes," commented David Sacks, PhD, Head of the Intracellular Parasite Biology Section at the National Institute of Allergy and Infectious Diseases, Bethesda, USA, "the remarkably limited number of species-specific genes should lead to the more rapid identification of sequences involved in specialized aspects of Leishmania biology, such as the development of L. braziliensis in the hindgut of its sandfly vector, and the restricted reservoir host range seen with L. infantum infections in dogs."

Around 350 million people in 88 countries on four continents are at risk of Leishmaniasis and its incidence has risen sharply over the past ten years. It is transmitted by the bite of various species of sandfly: wild and domesticated animals - as well as humans - act as a reservoir for the disease.

Don Powell | alfa
Further information:
http://www.sanger.ac.uk

Further reports about: CFAS Host Leishmania braziliensis parasite

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>