Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potent possibilities for parasite attack: new Leishmania genome sequences highlight gene targets for treatment development

18.06.2007
A comparison of three parasite species that cause Leishmaniasis has identified a small number of genes, many new to biology, that will provide a framework to target the search for new treatments. Leishmaniasis is a devastating disease that affects about two million people each year and threatens one-fifth of the world's population and new treatments are desperately needed.

In their report in Nature Genetics, published online on Sunday 17 June 2007, the researchers compared the genomes of L. infantum and L. braziliensis, which cause life-threatening visceral and disfiguring mucocutaneous leishmaniasis, respectively, with the sequence they produced in 2005 for L. major, which causes a less severe, cutaneous form of the disease. Despite the major differences in disease type, only 200 out of more than 8000 genes present in each genome were found to be differentially distributed between the three species. This exceptionally small variation in gene content has given new insights into those processes that may determine disease severity in humans.

"Identifying factors that allow three closely related organisms to cause vastly different clinical outcomes is a major quest for researchers and in this study we have narrowed the search to a number that can be realistically studied," commented Dr Matt Berriman, senior author on the paper, from the Wellcome Trust Sanger Institute.

The researchers found only five genes in the L. major genome for which no trace could be found in the other two species. By contrast, in Plasmodium, which causes malaria, about 20% of genes differ between related species.

... more about:
»CFAS »Host »Leishmania »braziliensis »parasite

"Clearly there must have been considerable evolutionary pressure over time to maintain the structure and sequence of the Leishmania genomes - the degree of similarity between these species was unexpected," explained Professor Deborah Smith, collaborator on this project at the University of York. "Perhaps only a few parasite genes are important in determining which type of disease develops after infection and the host genome plays a major role in clinical outcome."

The results picked up another surprising finding: the team could assign a function to only one-third of the 200 genes restricted to one or two of the species.

"The genome sequences have given us a short-cut to a small number of largely novel genes," explained Dr Chris Peacock, first author on the report. "Given their lack of similarity to human genes, they present a limited repertoire of potential targets for drug and vaccine development allowing researchers to optimise the use of limited resources."

Leishmaniasis is one of the neglected diseases that desperately need new research, as WHO/TDR notes: "Treatment of visceral leishmanisis by first-line drugs is long (4 weeks), given systemically, and expensive (US$120–150)". The affordable drugs have been in use for more than half a century and drug resistance is rife, creating a desperate need for new treatments. Biological studies for the function of 50% of Leishmania genes are lacking, so this comparative genome study provides a route to find those that might be essential to each species.

One potential target is the CFAS gene that codes for cyclopropane fatty acid synthase, an enzyme that may be involved in producing components of the cell membrane. CFAS is present in the genomes of L. braziliensis and L. infantum, but is absent from the human genome. The parasite genes are thought to have been acquired from bacterial species that have very similar sequences.

"CFAS is involved in virulence and persistence in Mycobacterium, causative agent of tuberculosis, so the identification of a CFAS gene in Leishmania raises the exciting possibility that some virulence factors are conserved between bacterial and eukaryotic intracellular pathogens," said Jeremy Mottram, a collaborator on the project who is a Professor in the Wellcome Centre for Molecular Parasitology at the University of Glasgow.

Some families of genes that determine the properties of the parasite cell surface have grown in number and some declined among the three species: 'death' of genes seems to be a major force for differences between the parasite genomes. Some genes, however, are evolving rapidly, leading the team to suspect they include key genes involved in interacting with the human host - where the battle between parasite and patient is fought and where rapid response is important to both.

Remarkably, L. braziliensis, the most ancient Leishmania species sequenced, contains genes that could provide a working pathway for RNAi, an emerging mechanism for gene regulation. The genome sequences show that components for this pathway are absent from the other two Leishmania species. This pathway might serve as an experimental tool in understanding the role of the many genes whose function is unknown, by using experimentally induced RNAi to 'knock-down' gene activity prior to host infection.

"In addition to their function with respect to promoting diverse clinical outcomes," commented David Sacks, PhD, Head of the Intracellular Parasite Biology Section at the National Institute of Allergy and Infectious Diseases, Bethesda, USA, "the remarkably limited number of species-specific genes should lead to the more rapid identification of sequences involved in specialized aspects of Leishmania biology, such as the development of L. braziliensis in the hindgut of its sandfly vector, and the restricted reservoir host range seen with L. infantum infections in dogs."

Around 350 million people in 88 countries on four continents are at risk of Leishmaniasis and its incidence has risen sharply over the past ten years. It is transmitted by the bite of various species of sandfly: wild and domesticated animals - as well as humans - act as a reservoir for the disease.

Don Powell | alfa
Further information:
http://www.sanger.ac.uk

Further reports about: CFAS Host Leishmania braziliensis parasite

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>