Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cytokine resistance contributes to pathology of type 2 diabetes

15.06.2007
In a study appearing this month in the Journal of Immunology, researchers at the University of Illinois describe how an impaired anti-inflammatory response plays a role in the pathology of type 2 diabetes.

Type 2 diabetes is classified as a metabolic disorder, but a growing number of researchers are beginning to think of it also as a disease of the innate immune system. Inflammation, a key component of the early immune response, is chronically elevated in people with type 2 diabetes. While the pro-inflammatory pathways of type 2 diabetes have received much attention, the anti-inflammatory side of the equation is less well known.

The new study focused on a number of cytokines, protein signals that bind to specific receptors on cells and set off a cascade of biochemical reactions within the cell. Interleukins, interferons, tumor necrosis factors and some growth factors are among the cytokines that direct many aspects of the immune response. Cytokines are secreted by many types of cells, including the immune cells known as macrophages.

In earlier studies, the researchers had shown that macrophages in diabetic and obese (diabese) mice secrete more pro-inflammatory and less anti-inflammatory cytokines than those of nondiabese mice. The team, led by pathology professor and department head Gregory Freund, also had demonstrated that human monocytes cultured under type 2 diabetic conditions had impaired interleukin-4 signaling. Interleukin

4 (IL-4) is an important player in the immune response in that it steers macrophages toward the production of other anti-inflammatory cytokines. It also inhibits secretion of the pro-inflammatory cytokines.

When IL-4 binds to its receptor on a target cell, it sets off one of two cascades of intracellular events.

The first of these signal transduction pathways, the Jak-STAT pathway, is well studied and well understood. The second, called the insulin receptor substrate 2 / phosphatidylinositol-3 kinase (IRS-2/PI3K) pathway, was more of a mystery, and of greater interest to Freund and his colleagues.

What drew them to this pathway was its potential role in the anti-inflammatory response, and its similarity to the cascade initiated when cells respond to insulin.

"One of the actions of diabetes is to create intracellular insulin resistance," Freund said. "Some of the cytokines that work on cells share the same pathways as the insulin receptor." Since diabetes causes insulin resistance, Freund said, "shouldn't there be a resistance to cytokines, too? And that is what we found."

The research team showed, for the first time, that the IRS-2 signaling arm of the interleukin-4 pathway directed the up-regulation of a key anti-inflammatory molecule in primary macrophages, and that this pathway was disrupted in type 2 diabetic conditions. They also showed that the loss of IL-4 function in diabese mice caused chronic over-expression of an important suppressor of cytokine signaling (SOCS) protein. This SOCS-3 protein aborts the cascade of events that normally leads to insulin uptake and/or cytokine signaling in a balanced inflammatory response.

This study supports earlier findings that inflammation is a key part of the pathology of diabetes, Freund said. Pro-inflammatory cytokines are elevated in type 2 diabetes, but the anti-inflammatory mechanisms are also impaired, leading to a multitude of major and minor health issues in the diabese.

"They get a cold. They get injured. Something happens. And it's worse in those people with obesity or diabetes and lasts longer than it does in others," Freund said. "Why? The imbalance may be the elevation in pro-inflammation. But it probably also includes a loss of anti-inflammatory function."

This research was supported by grants from the National Institutes of Health, American Heart Association, and the U. of I. Agricultural Experiment Station.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: CASCADE Cytokine Diabetes anti-inflammatory macrophages receptor

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>