Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae that are both "plant" and "animal"

14.06.2007
Nature is full of surprises. There are some algal species that can act both as "plants" and as "animals" at the same time. Wanderson Carvalho from the University of Kalmar has in his research for his PhD degree, contributed to better understand why these organisms have this behavior and what might be the effects of this nutrition on the environment, economy and public health issues.

We know that in terrestrial ecosystems, plants are the only living beings capable of producing their own food. This is only possible thanks to the chlorophyll and other pigments which can capture the sunlight energy.

With this energy and nutrients (e. g. nitrogen and phosphorus) from land and carbon dioxide from the atmosphere they produce organic material. Plants are thus producers and belong to the base of the food chain. Until recently it was believed that the same system worked for lakes and the sea, where phytoplankton (microalgae) served as food for zooplankton (microscopic animals), which in turns were eaten by small fishes, which were eaten by bigger fishes and then by humans and other top predators. However, nature is full of surprises! There are algae species that can act both as "plants" and as "animals" at the same time.

As "plants" the algae produce their own food and as "animals" they can eat other plants or even their own grazers. These organisms are called mixotrophs and their nutritional strategy is thus known as mixotrophy, in other words: "mixed nutrition". This dual nutritional behavior affects the notion of food chain mentioned above. In a comparison, imagine if instead of a cow eating the grass, the grass grabs and eats the cow.

... more about:
»Carvalho »animals" »mixotrophs »nutrient

The thesis of Wanderson Carvalho had as one of the objectives to quantify in two mixotrophic species how much nitrogen and phosphorous are needed when they act as "plants" and as "animals", respectively. For example, under nutrient (nitrogen and phosphorus) deficient conditions, mixotrophs can outcompete other algae species by eating them or utilizing the little available nutrients dissolved in the water. Wanderson also found out that "feeding as animals" can also provide carbon and energy to the mixotrophs if light is low or absent.

In absence of food, mixotrophs can use their photosynthetic capabilities to survive until suitable prey is available again. Mixotrophs can decrease competition since they can feed on their competitors and predators alike. Mixotrophs can survive adverse periods and because of that many mixotrophs form blooms, becoming potentially harmful to the environment.

Wanderson Carvalho thesis is entitled The Role of Mixotrophy in the Ecology of Marine "Phytoplankton".

More information:
Wanderson Carvalho tel: +46-480 447 352; wanderson.carvalho@hik.se
or Edna Granéli tel: +46-480 447 307 mobil: +46-70 674 9415.
Pressofficer Karin Ekebjär; karin.ekebjar@hik.se +46-709229 435

Karin Ekebjär | idw
Further information:
http://www.vr.se

Further reports about: Carvalho animals" mixotrophs nutrient

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>