Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Algae that are both "plant" and "animal"

Nature is full of surprises. There are some algal species that can act both as "plants" and as "animals" at the same time. Wanderson Carvalho from the University of Kalmar has in his research for his PhD degree, contributed to better understand why these organisms have this behavior and what might be the effects of this nutrition on the environment, economy and public health issues.

We know that in terrestrial ecosystems, plants are the only living beings capable of producing their own food. This is only possible thanks to the chlorophyll and other pigments which can capture the sunlight energy.

With this energy and nutrients (e. g. nitrogen and phosphorus) from land and carbon dioxide from the atmosphere they produce organic material. Plants are thus producers and belong to the base of the food chain. Until recently it was believed that the same system worked for lakes and the sea, where phytoplankton (microalgae) served as food for zooplankton (microscopic animals), which in turns were eaten by small fishes, which were eaten by bigger fishes and then by humans and other top predators. However, nature is full of surprises! There are algae species that can act both as "plants" and as "animals" at the same time.

As "plants" the algae produce their own food and as "animals" they can eat other plants or even their own grazers. These organisms are called mixotrophs and their nutritional strategy is thus known as mixotrophy, in other words: "mixed nutrition". This dual nutritional behavior affects the notion of food chain mentioned above. In a comparison, imagine if instead of a cow eating the grass, the grass grabs and eats the cow.

... more about:
»Carvalho »animals" »mixotrophs »nutrient

The thesis of Wanderson Carvalho had as one of the objectives to quantify in two mixotrophic species how much nitrogen and phosphorous are needed when they act as "plants" and as "animals", respectively. For example, under nutrient (nitrogen and phosphorus) deficient conditions, mixotrophs can outcompete other algae species by eating them or utilizing the little available nutrients dissolved in the water. Wanderson also found out that "feeding as animals" can also provide carbon and energy to the mixotrophs if light is low or absent.

In absence of food, mixotrophs can use their photosynthetic capabilities to survive until suitable prey is available again. Mixotrophs can decrease competition since they can feed on their competitors and predators alike. Mixotrophs can survive adverse periods and because of that many mixotrophs form blooms, becoming potentially harmful to the environment.

Wanderson Carvalho thesis is entitled The Role of Mixotrophy in the Ecology of Marine "Phytoplankton".

More information:
Wanderson Carvalho tel: +46-480 447 352;
or Edna Granéli tel: +46-480 447 307 mobil: +46-70 674 9415.
Pressofficer Karin Ekebjär; +46-709229 435

Karin Ekebjär | idw
Further information:

Further reports about: Carvalho animals" mixotrophs nutrient

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>