Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae that are both "plant" and "animal"

14.06.2007
Nature is full of surprises. There are some algal species that can act both as "plants" and as "animals" at the same time. Wanderson Carvalho from the University of Kalmar has in his research for his PhD degree, contributed to better understand why these organisms have this behavior and what might be the effects of this nutrition on the environment, economy and public health issues.

We know that in terrestrial ecosystems, plants are the only living beings capable of producing their own food. This is only possible thanks to the chlorophyll and other pigments which can capture the sunlight energy.

With this energy and nutrients (e. g. nitrogen and phosphorus) from land and carbon dioxide from the atmosphere they produce organic material. Plants are thus producers and belong to the base of the food chain. Until recently it was believed that the same system worked for lakes and the sea, where phytoplankton (microalgae) served as food for zooplankton (microscopic animals), which in turns were eaten by small fishes, which were eaten by bigger fishes and then by humans and other top predators. However, nature is full of surprises! There are algae species that can act both as "plants" and as "animals" at the same time.

As "plants" the algae produce their own food and as "animals" they can eat other plants or even their own grazers. These organisms are called mixotrophs and their nutritional strategy is thus known as mixotrophy, in other words: "mixed nutrition". This dual nutritional behavior affects the notion of food chain mentioned above. In a comparison, imagine if instead of a cow eating the grass, the grass grabs and eats the cow.

... more about:
»Carvalho »animals" »mixotrophs »nutrient

The thesis of Wanderson Carvalho had as one of the objectives to quantify in two mixotrophic species how much nitrogen and phosphorous are needed when they act as "plants" and as "animals", respectively. For example, under nutrient (nitrogen and phosphorus) deficient conditions, mixotrophs can outcompete other algae species by eating them or utilizing the little available nutrients dissolved in the water. Wanderson also found out that "feeding as animals" can also provide carbon and energy to the mixotrophs if light is low or absent.

In absence of food, mixotrophs can use their photosynthetic capabilities to survive until suitable prey is available again. Mixotrophs can decrease competition since they can feed on their competitors and predators alike. Mixotrophs can survive adverse periods and because of that many mixotrophs form blooms, becoming potentially harmful to the environment.

Wanderson Carvalho thesis is entitled The Role of Mixotrophy in the Ecology of Marine "Phytoplankton".

More information:
Wanderson Carvalho tel: +46-480 447 352; wanderson.carvalho@hik.se
or Edna Granéli tel: +46-480 447 307 mobil: +46-70 674 9415.
Pressofficer Karin Ekebjär; karin.ekebjar@hik.se +46-709229 435

Karin Ekebjär | idw
Further information:
http://www.vr.se

Further reports about: Carvalho animals" mixotrophs nutrient

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>