Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Wider View from a Detailed Focus: New Project challenges conventional view of genome biology

A major study of the organization and regulation of the human genome published today changes our concept of how our genome works. The integrated study is an exhaustive analysis of 1% of the genome that, for the first time, gives an extensive view of genetic activity alongside the cellular machinery that allows DNA to be read and replicated.

The lead report from the ENCyclopedia Of DNA Elements (ENCODE) Consortium, published in Nature, together with 28 companion papers published in Genome Research, defined in detail which regions of the genome are actively copied in the cell, revealed the location and studied evolution of elements that control gene activity, and defined the relationship between DNA-associated proteins and gene activity and DNA replication.

The complex tapestry of interwoven elements revealed today suggests that "our perspective of transcription and genes may have to evolve," the researchers state, noting that their research "poses some interesting mechanistic questions" that have yet to be answered.

Our understanding of genome biology from the Human Genome Project gave us an overview of a 3-billion-base genome, peppered with some 22,000 discrete genes and the sequences that regulate their activity. These were estimated to occupy perhaps 3-5% of the genome, though this number is expected to be an underestimate.

... more about:
»Cell »DNA »DNA sequence »ENCODE »Genom »Regulation »transcription

"The new view transforms our view of the genomic fabric," explained Dr Tim Hubbard, from the Wellcome Trust Sanger Institute, "The majority of the genome is copied, or transcribed, into RNA, which is the active molecule in our cells, relaying information from the archival DNA copy to the cellular machinery. This is a remarkable finding, since most prior research suggested only a fraction of the genome was transcribed."

"But it is our new understanding of regulation of genes that stands out. The integrated approach has helped us to identify new regions of gene regulation and altered our view of how gene regulation occurs."

From the earliest studies of gene activity in bacteria, a picture emerged that suggested control regions were most often located at or near sites from which gene transcription started. The new work identifies many previously unknown control regions and shows that control regions are as likely to be beyond the end of the gene.

Alterations in control regions are increasingly thought to be of significance for human disease, Dr Dermitzakis from the Wellcome Trust Sanger Institute and one of the corresponding authors on the paper explained: "For the first time we can see DNA sequence variation in the context of the biochemical workings of the cell. We can now begin to unravel the consequences that such variations hold for individuals and their susceptibility to disease."

The team showed that transcription of DNA is pervasive across the genome, and that RNA transcripts overlap known genes and are found in what were previously thought to be gene ‘deserts'.

"A major surprise was that many of the novel control regions are not shared with other species, but restricted to our human genome," continued Dr Dermitzakis. "We appear to have a reservoir of active elements that seem to provide no specific or direct benefit.

"Our suggestion is that these elements can provide a source for new variation between species and within the human genome. This is our genomic seedcorn for the future. "

The scale of the collaboration brings new understanding of the interaction between our genome and the proteins that control gene activity and DNA replication. The results show that proteins called histones that bind DNA to package it within the cell nucleus are modified to promote or inhibit gene activity and can be used to predict better the location of novel genes.

"Specific types of modifications of the histone proteins near gene starts are a strong predictor of gene activity," explained Dr Ian Dunham, from the Wellcome Trust Sanger Institute, "whereas further histone modifications at sites away from genes appear to be a signature of regulatory elements that can enhance transcription." A detailed analysis of these effects is also published by the Sanger Institute group in one of the companion papers in Genome Research.

"It is only from a study such as ENCODE that we can obtain such a valuable detailed view of our genome. This project has been a magnificent collaboration amongst some of the world's premier genome scientists, and has revealed many new insights. There is every expectation that a great deal more will be revealed as the project scales to the whole genome."

Although much that is new has been discovered, much yet remains to be understood. Similarity of DNA sequence between species is often a sign of the value of that sequence, yet a function has not been found for many DNA sequences that are conserved. The role of the massive new numbers of RNA transcripts is unknown. And the function of the large number of control elements is yet to be elucidated.

The ENCODE consortium is organized by the National Human Genome Research Institute (NHGRI), whose Director, Francis S Collins, MD PhD, said: "This impressive effort has uncovered many exciting surprises and blazed the way for future efforts to explore the functional landscape of the entire human genome.

"Because of the hard work and keen insights of the ENCODE consortium, the scientific community will need to rethink some long-held views about what genes are and what they do, as well as how the genome's functional elements have evolved. This could have significant implications for efforts to identify the DNA sequences involved in many human diseases."

Don Powell | alfa
Further information:

Further reports about: Cell DNA DNA sequence ENCODE Genom Regulation transcription

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>