Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deprived bacteria grow up meaner

14.06.2007
If the Listeria monocytogenes bacteria behind food poisoning are starved of oxygen, they are liable to turn really nasty according to research published today in the online journal BMC Microbiology. Limiting oxygen produces bacteria up to 100 times more invasive than similar bacteria grown with ample oxygen supplies.

Bjarke Christensen and Tine Licht together with colleagues from Denmark’s National Food Institute set out to investigate whether the growth conditions of Listeria bacteria just prior to being eaten had an effect on their virulence once absorbed by the gut. Guinea pigs were fed food laced with L. monocytogenes, grown either in an oxygen-rich atmosphere, or starved of oxygen. The team used fluorescent labelling to tell the bacteria strains apart.

Bacterial oxygen restriction increased the number of animals carrying L. monocytogenes in their internal organs, although it did not affect the actual number of bacteria infecting each organ. It seems that oxygen restriction smoothes the bacteria’s initial path from the gut into organs including the jejunum, liver and spleen, but does not help the bugs to multiply on arrival.

With better success surviving the gastric barrier, the oxygen-restricted bacteria have a greater chance of causing infection. The authors suggest that oxygen restriction may lead to increased levels of InteralinA (InlA) protein on the invading bacteria’s cell walls, InlA being a key factor in L. monocytogenes virulence.

... more about:
»Listeria »Organ »monocytogenes

These findings are particularly relevant to help assess the risk of Listeria in food, especially the highly processed foods with long shelf lives that are popular breeding grounds for Listeria.

Press Officer | alfa
Further information:
http://www.biomedcentral.com/bmcmicrobiol/

Further reports about: Listeria Organ monocytogenes

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>