Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staphylococcus aureus hides out in cells

14.06.2007
A major cause of human and animal infections, Staphylococcus aureus bacteria may evade the immune system’s defences and dodge antibiotics by climbing into our cells and then lying low to avoid detection. New research in the online open access journal BMC Genomics shows how S. aureus makes itself at home in human lung cells for up to two weeks.

A team of 12 researchers from University Hospital of Geneva, Switzerland and the Institute of Food Research, Norwich, UK set out to uncover what S. aureus (6850) did inside human lung epithelial cells (A549) using an in vitro model.

They found that shortly after S. aureus entered the lung cells, the bacteria’s gene expression profile dramatically changed: gene expression for bacterial metabolic functions and transport shut down, putting the bacteria in a dormant state. Simultaneously, production of toxins potentially lethal for the epithelial cells becomes strictly controlled to limit cellular damage.

Mechanisms that helped the bacteria to survive and/or multiply, including metabolic and energy production functions, then resumed. Although most of the bacteria had died by about four days as a result of antibiotic treatment, the team still found viable bacteria in their model system two weeks after infection.

... more about:
»Staphylococcus »aureus »bacteria

The findings may help in understanding persistent infections, and in designing new antibacterial drugs. S. aureus has not traditionally been considered an intracellular pathogen, but the molecular details that govern its extended persistence remain largely unknown. The bacteria can generate relapsing infections even years after the first episode was apparently cured.

“S. aureus intracellular survival appears related to its capability to adopt a discrete behaviour instead of actively duplicating,” says Patrice Francois, a Geneva-based member of the research team. “S. aureus then benefits from natural or programmed cell death to re-emerge and trigger another episode of infection, leading to chronicity.”

Press Officer | alfa
Further information:
http://www.biomedcentral.com/bmcgenomics/

Further reports about: Staphylococcus aureus bacteria

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>