Staphylococcus aureus hides out in cells

A team of 12 researchers from University Hospital of Geneva, Switzerland and the Institute of Food Research, Norwich, UK set out to uncover what S. aureus (6850) did inside human lung epithelial cells (A549) using an in vitro model.

They found that shortly after S. aureus entered the lung cells, the bacteria’s gene expression profile dramatically changed: gene expression for bacterial metabolic functions and transport shut down, putting the bacteria in a dormant state. Simultaneously, production of toxins potentially lethal for the epithelial cells becomes strictly controlled to limit cellular damage.

Mechanisms that helped the bacteria to survive and/or multiply, including metabolic and energy production functions, then resumed. Although most of the bacteria had died by about four days as a result of antibiotic treatment, the team still found viable bacteria in their model system two weeks after infection.

The findings may help in understanding persistent infections, and in designing new antibacterial drugs. S. aureus has not traditionally been considered an intracellular pathogen, but the molecular details that govern its extended persistence remain largely unknown. The bacteria can generate relapsing infections even years after the first episode was apparently cured.

“S. aureus intracellular survival appears related to its capability to adopt a discrete behaviour instead of actively duplicating,” says Patrice Francois, a Geneva-based member of the research team. “S. aureus then benefits from natural or programmed cell death to re-emerge and trigger another episode of infection, leading to chronicity.”

Media Contact

Press Officer alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors