Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR Biologists Unravel the Genetic Secrets of Black Widow Spider Silk

13.06.2007
Disclaimer
The following press releases refer to a selection of the upcoming articles in PLoS ONE. The releases are provided by the article authors and/or their institutions. Any opinions expressed in these releases or articles are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

Biologists at the University of California, Riverside have identified the genes, and determined the DNA sequences, for two key proteins in the “dragline silk” of the black widow spider – an advance that may lead to a variety of new materials for industrial, medical and military uses.

The black widow spider’s dragline silk is a standout compared to other spider silks because of its superior strength and extensibility, a combination which enables black widow dragline silk to absorb enormous amounts of energy. These properties suggest that synthetically-produced silk might find applications as diverse as lightweight super-strong body armor, components of medical devices and high-tech athletic attire.

The researchers – Associate Professor of Biology Cheryl Hayashi and postdoctoral researchers Nadia Ayoub and Jessica Garb – report their findings in the June 13th issue of the online, open-access journal PLoS ONE, published by the Public Library of Science (PLoS). In the article, they describe their work to identify the genes encoding the two key proteins, named MaSp1 and MaSp2, and determine the genes’ complete DNA sequences.

... more about:
»DNA sequence »PLoS »dragline »key protein

There are currently no products on the market based on the dragline silk of spiders. “There’s nothing quite as good yet as natural dragline silk, but we should get a lot closer now that we have the full genetic recipe,” said Hayashi.

With the ingredients and their genetic blueprint now known, it may be possible to synthetically produce the proteins by inserting the genetic sequences into host organisms such as bacteria, plants or animals, she said. Once the pure proteins are harvested, a manufacturing challenge will be spinning them into silk fibers that have the same remarkable properties as spider spun silk. But several advances have recently been made in artificial spinning methods.

When spiders manufacture dragline silk, their silk glands produce a “gooey” slurry of the proteins needed, which are transported to the spinneret through a duct where the proteins interact and align to form the silk strands.

“The production of artificial silk is not quite there yet,” Hayashi said. “Now, with the full length genes known and as we learn more about theses two proteins, hopefully we will have a better shot at mimicking nature.”

Spider silks have some of the best mechanical properties of any known natural fibers, thus they are being considered in the improvement of a variety of products including surgical microsutures and specialty ropes. Dragline silk – just one type of the seven different silks that an individual spider produces – are used by spiders as the structural foundation of their webs and to support their body weight as they move about. The dragline silk of black widows is one of the strongest and toughest spider silks identified thus far.

Hayashi’s laboratory utilized specialized instrumentation in the Core Instrumentation Facility of the UCR Institute for Integrative Genome Biology in their quest to identify the genes that encode the proteins MaSp1 and MaSp2, then to determine the full genetic sequences. The project lasted more than a year and was funded by the Army Research Office and the National Science Foundation.

Iqbal Pittalwala | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000514

Further reports about: DNA sequence PLoS dragline key protein

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>