Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicist cracks women’s random but always lucky choice of X chromosome

A University of Warwick physicist has uncovered how female cells are able to choose randomly between their two X chromosomes and why that choice is always lucky.

Human males have both a X and a Y chromosome but females have two X chromosomes. This means that in an early stage in the development of a woman’s fertilised egg the cells need to silence one of those two X chromosomes. This process is crucial to survival and problems with the process are related to serious genetic diseases.

Both X chromosomes in a cell have a suicide gene called XIST which, if activated, seals the chromosome behind a barrier of RNA preventing the activation of any other gene. Researchers believe that this suicide gene can be itself blocked by a plug of proteins forming on top of its specific location on the chromosome but they had little idea as to why this should happen randomly to one X chromosome’s gene and not the other.

Scientists are extremely uncomfortable with this randomness and have sought a clear scientific reason as to why one X chromosome was switched off rather than the other. The observations also seem to run counter to the usual idea that the biological mechanisms evolve in ways that allow a "best" choice to be made between things rather than a random one.

... more about:
»X chromosome »XIST »randomness

Now researchers led by University of Warwick physicist Dr Mario Nicodemi have explained how this randomness occurs and why that it is beneficial. This will help understand the problems of a small number of women who unusually don’t have a completely random distribution of X chromosomes but the explanation may have much wider implications as at least 10% of our genes may behave in similar ways as mechanism that "chooses" between X chromosomes. Examples of this range from the immune system to our olfactory apparatus.

Coming at the problem from the perspective of a physicist Dr Nicodemi has found an explanation for the random selection based on thermodynamics. Research has already shown that at the key moment in this process both X chromosomes are brought close together within the cell. The Warwick researcher paper says that what happens next is that material for a "protein plug" then begins to gather around both of the XIST suicide genes on each X Chromosome. This starts a race between the two build ups of protein. Inevitably one of these two nascent protein plugs narrowly wins that race and reaches an energy state in which it can pull together all the material building up in both plugs into a single protein plug. That single plug then closes off one of the XIST suicide genes allowing its host X chromosome to continue to operate. However the other XIST suicide gene is now freed to activate and shuts down its X chromosome.

Since putting forward this explanation researchers in Harvard have observed actual plugs of protein shutting down X chromosome XIST genes in a manner giving further confirmation to Dr Nicodemi’s research. So the randomness is explained but what about researchers’ other concerns? Dr Nicodemi believes the randomness actually does give an evolutionary advantage. The mechanism means equal numbers of both the maternal and paternal X chromosome are preserved in the gene pool and the resultant population thus has more chance of surviving any biological threat targeted at a single version of the X chromosome.

Peter Dunn | alfa
Further information:

Further reports about: X chromosome XIST randomness

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>