Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Force, not light, gives MIT researchers images of cell receptors

--Technique could assist in the design and testing of new drug molecules

MIT researchers have found a way to glimpse interactions between molecules on the surface of a cell.

By measuring the force generated by these cell surface interactions, the MIT team was able to image and measure the rate at which individual molecules join and separate from receptors on the cell surface. These interactions are not visible with traditional light microscopy.

"We were able to measure regions of strong intermolecular binding on the cell surfaces, which enabled us to map the locations of the receptors," said Sunyoung Lee, a graduate student in the Department of Materials Science and Engineering and lead author of a paper on the work in the June 5 issue of the Proceedings of the National Academy of Sciences.

... more about:
»Vliet »cytoskeleton »interactions »kinetics »receptor

The technique, known as functionalized force imaging, could allow researchers to better understand the strength and rates of interactions between molecular ligands outside the cell and the molecular receptors on the cell surface. These interactions play a critical role in cell growth, proliferation and differentiation. It could also assist in the design and testing of new drug molecules that bind strongly or quickly to the target cell.

Receptors on the cell surface allow the cell to maintain constant communication with its environment-they bind to molecules that convey information about the environment and instructions telling them what functions to carry out. In this study, the researchers looked at a receptor called vascular endothelial growth factor receptor-2 (VEGFR2), which is important for the proliferation, migration and differentiation of the vascular endothelial cells that line blood vessels.

Researchers in the lab of Krystyn Van Vliet, senior author of the PNAS study, are working to understand the kinetics of cell-molecule interactions and how a cell responds to mechanical and chemical changes in its environment. These changes in function can be evidenced by the number and type of receptors displayed on their surfaces.

"You can ask specific questions about how the mechanical and chemical stimuli outside the cell generate changes in cell surfaces and structures within the cell," said Van Vliet, the Thomas Lord Assistant Professor of Materials Science and Engineering.

With traditional light-based (optical) microscopy, you can see large cell structures like the nucleus and cytoskeleton, but not tiny molecules such as individual receptors on the living cell surface. To achieve the nanometer-scale spatial resolution required to see these molecules on the cell surface, the researchers used mechanical force, rather than light.

To pull a bound molecule from its target receptor, a very small force of about 100 piconewtons is required. The researchers measured that force by attaching anti-VEGFR2 antibody molecules to the end of a cantilevered probe in a scanning probe microscope. The cantilever oscillates in a regular pattern as it scans along the cell surface, and whenever the pattern is disturbed, the researchers can infer that the antibody on the probe has bound or "stuck" to its target receptor, VEGFR2.

By mapping those reversible interactions at every point on the cell surface, the researchers can determine where the receptors are located with respect to other cell structures. More importantly, said Van Vliet, they can follow the molecular interactions on the cell over time, allowing them to determine the binding kinetics, or the rate at which molecules join and separate from the cell surface.

The force-based imaging also allows for visualization of the stiff cytoskeleton underneath the cell surface, which provides internal structure for the cell. By overlapping images of the cytoskeleton and the VEGF receptors, the researchers found that most of the receptors were located near the cytoskeleton. Such correlations support the current hypothesis that VEGF receptor function is linked to that of other cell surface proteins including integrins, which transmit mechanical forces from the outside to the inside of the cell, Van Vliet said.

Other researchers have used this approach to measure binding forces in isolated proteins, but the MIT team shows that these tiny forces can also be used to visualize binding kinetics on chemically fixed

(nonliving) cells and living cells.

"It's challenging to do this on cells because their surfaces are made up of many different kinds of molecules, which makes them topographically rough, chemically diverse, and mechanically compliant," said Van Vliet.

Van Vliet and Lee outlined several possible applications of functionalized force imaging on endothelial, cancer and stem cells, including identification of target receptors for cell-specific drugs; comparison of kinetics for individual and clustered receptors; and visualizing how the mechanical stiffness of extracellular materials alters cell function and cell surface receptor activity over time.

The research was funded by the National Science Foundation Nanoscale Exploratory Research, the Center for the Integration of Medicine and Innovative Technology, the Hugh Hampton Young Memorial Foundation and the Beckman Foundation Young Investigators Program.

Elizabeth A. Thomson | MIT News Office
Further information:

Further reports about: Vliet cytoskeleton interactions kinetics receptor

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>