Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researchers discover gene switched off in cancer can be turned on

12.06.2007
Study lays groundwork for developing a new class of targeted therapies

A gene implicated in the development of cancer cells can be switched on using drugs, report researchers from the University of Michigan Comprehensive Cancer Center. The finding could lead to a new class of targeted cancer therapies with potential to benefit many different cancer types.

Popular new drugs such as Herceptin and Gleevec more effectively treat cancer by targeting genetic mutations that express themselves in large amounts, causing cancer to develop. But cancers also arise because genes that control growth are turned off. While researchers can use these turned-off genes to identify or monitor cancer, currently no treatments actually target these genes.

U-M researchers found that a gene called Brahma, or BRM, is silent – but not missing – in some cancer cells. By exposing the BRM protein to an inhibitor drug, the researchers were able to turn the gene back on, allowing BRM to be expressed. The researchers found this gene is turned off in about 15 percent of tumors studied, including cells from lung, esophageal, ovarian, bladder, colon and breast cancers.

... more about:
»BRM »Expression »Inhibitor »targeted »therapies

The researchers were able to use existing drugs, which showed some usefulness in turning on the BRM gene. But new drugs would need to be developed to be more effective in reactivating this gene in cancer cells. Still, researchers are excited about the potential this finding could have in leading to new targets for cancer treatment.

“This is a targetable target. We can detect it, but we need to find a better way to turn it back on. No drugs are designed to deal with a gene that’s turned off. But it’s a straightforward extension of current therapies that target genes that are turned on,” says lead study author David Reisman, M.D., Ph.D., assistant professor of internal medicine at the U-M Medical School.

Results of the study appear in the advanced online publication of the journal Oncogene.

The researchers sought to understand why BRM is not expressed in certain cancer cell lines. They found no mutations to the gene but rather that it was just silent – essentially like a switch that had been turned off. Knowing that a class of drugs called histone deacetylase inhibitors, or HDAC inhibitors, can affect gene expression, the researchers applied these drugs to the cells and found the BRM expression could be restored – like flipping the switch back on.

While the existing HDAC inhibitors did return BRM expression, the effect was short-lived. Once the drugs were taken away, BRM expression decreased.

“The HDAC inhibitors are not the perfect answer, but in principle this tells us we can turn our gene back on. If we can turn the gene back on, it may not be a cure for cancer, but it could slow it down or make it responsive to existing drugs,” Reisman says.

The researchers targeted lung cancer cell lines in particular, although they found similar results in a variety of other cancer cell lines tested. A potential target to treat lung cancer is particularly crucial as the death rate from lung cancer has not changed in 30 years. Newer treatments are much less toxic and extend lives by months, but the same people who died from lung cancer 30 years ago, would still succumb to this disease today.

Targeted therapies have dramatically improved cancer care in recent years, because they thwart the specific genes which drive the development and progress of cancers. They typically have few toxic side effects, unlike traditional chemotherapy, making them more tolerable as a long-term treatment or in combination with other drugs.

“Tumors are not the same from one person to the next, and even the cells within a single tumor are not the same. Giving a single drug or drug combination to 500 people is setting ourselves up for failure, much like a one-size-fits-all clothing store would never succeed,” Reisman says.

“Targeted therapies are now opening the door, because they are essentially given only to those patients who have a high likelihood of response. Their low toxicity means the patient can be treated for long periods of time, which is unlike older and more traditional chemotherapy agents. Even if these new targeted therapies don’t cure the cancer, we can at least have long-term survival,” he adds.

Nicole Fawcett | EurekAlert!
Further information:
http://www2.med.umich.edu/prmc/media/relarch.cfm

Further reports about: BRM Expression Inhibitor targeted therapies

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>