Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor vessels identified by unique molecular markers

12.06.2007
Results from a new study have made it easier for scientists to distinguish between growing blood vessels in healthy tissues and those that are associated with tumors. This is a significant finding because this distinction, particularly at a molecular level, has remained elusive for quite some time.

The research, released in the June issue of the journal Cancer Cell, published by Cell Press, has exciting implications for development of more selective vascular-targeted anticancer therapeutics.

A major strategy for destroying cancer cells has been to disrupt the growing blood vessels that support tumor growth. However, current vascular-targeted therapies may also damage normal growing blood vessels. This is a concern because the formation of new blood vessels, or angiogenesis, continues to occur in adults, for example, during pregnancy, menstruation, and wound healing. Dr. Brad St. Croix and colleagues from the National Cancer Institute at Frederick executed a series of studies aimed at identifying markers that can be used to distinguish between proliferating blood vessels in normal and diseased tissues.

The researchers systematically examined gene expression patterns in the endothelial cells that line blood vessels derived from normal resting tissues, regenerating tissues, and tumors. A comparison of the normal vessels revealed several organ-specific endothelial genes that could potentially aid in the delivery of molecular medicine to specific anatomical sites. The study also revealed 13 genes that are selectively overexpressed in tumor blood vessels. Although the function of most of the newly identified genes in tumor blood vessels is unclear, many of the genes encode cell surface proteins, making them appealing targets for the development of new therapeutic agents.

... more about:
»Molecular »Protein »Vessels »identified

One of the cell surface proteins identified, called CD276, was found to be frequently overexpressed in the blood vessels of a variety of human cancers. The researchers also report that in many of the tumors examined CD276 was also overexpressed by the tumor cells, making this protein a particularly attractive target because a suitable inhibitory molecule might be able to deliver a double blow: one to the tumor cells themselves and the other to the blood vessels that feed it. “These studies reveal that tumor vessels contain a unique molecular fingerprint that can be used to distinguish them from normal proliferating vessels,” explained Dr. St. Croix; “they also provide new targets that could help guide the development of safer vascular-targeted therapies with potentially fewer side effects.”

Erin Doonan | EurekAlert!
Further information:
http://www.cancercell.org

Further reports about: Molecular Protein Vessels identified

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>