Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor vessels identified by unique molecular markers

12.06.2007
Results from a new study have made it easier for scientists to distinguish between growing blood vessels in healthy tissues and those that are associated with tumors. This is a significant finding because this distinction, particularly at a molecular level, has remained elusive for quite some time.

The research, released in the June issue of the journal Cancer Cell, published by Cell Press, has exciting implications for development of more selective vascular-targeted anticancer therapeutics.

A major strategy for destroying cancer cells has been to disrupt the growing blood vessels that support tumor growth. However, current vascular-targeted therapies may also damage normal growing blood vessels. This is a concern because the formation of new blood vessels, or angiogenesis, continues to occur in adults, for example, during pregnancy, menstruation, and wound healing. Dr. Brad St. Croix and colleagues from the National Cancer Institute at Frederick executed a series of studies aimed at identifying markers that can be used to distinguish between proliferating blood vessels in normal and diseased tissues.

The researchers systematically examined gene expression patterns in the endothelial cells that line blood vessels derived from normal resting tissues, regenerating tissues, and tumors. A comparison of the normal vessels revealed several organ-specific endothelial genes that could potentially aid in the delivery of molecular medicine to specific anatomical sites. The study also revealed 13 genes that are selectively overexpressed in tumor blood vessels. Although the function of most of the newly identified genes in tumor blood vessels is unclear, many of the genes encode cell surface proteins, making them appealing targets for the development of new therapeutic agents.

... more about:
»Molecular »Protein »Vessels »identified

One of the cell surface proteins identified, called CD276, was found to be frequently overexpressed in the blood vessels of a variety of human cancers. The researchers also report that in many of the tumors examined CD276 was also overexpressed by the tumor cells, making this protein a particularly attractive target because a suitable inhibitory molecule might be able to deliver a double blow: one to the tumor cells themselves and the other to the blood vessels that feed it. “These studies reveal that tumor vessels contain a unique molecular fingerprint that can be used to distinguish them from normal proliferating vessels,” explained Dr. St. Croix; “they also provide new targets that could help guide the development of safer vascular-targeted therapies with potentially fewer side effects.”

Erin Doonan | EurekAlert!
Further information:
http://www.cancercell.org

Further reports about: Molecular Protein Vessels identified

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>