Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The unexpected connection of two gene regulation mechanisms points to new ways for the fight against leukemia

12.06.2007
When the activity of individual genes it is longer required, there are two main mechanisms responsible for the “switching off”, mainly DNA methylation and the Polycomb protein complex.

Sometimes, these mechanisms lose their efficiency and some of the genes that should be “switched off” remain active. This, in turn, could lead to uncontrolled cellular proliferation, and tumorigenesis. These mechanisms, present both in lower organisms as well as in mammals, have always been thought to be separated and independent.

The work, which appears on the cover this week in the June issue of the prestigious journal Cancer Cell, carried out by researchers of the Differentiation and Cancer Programme, at the Centre for Genomic Regulation (CRG), in Barcelona (Spain), demonstrates the cross-talk between these two gene silencing mechanisms in patients suffering from acute leukemia. The work, led by the ICREA researcher Luciano Di Croce, head of the group Epigenetics and Cancer, at the CRG, performed in collaboration with Kristian Helin’s group, at the Biotech Research and Innovation Centre in Copenhagen (Denmark), and Dr. Nomdedeu’s group, at the Santa Creu and Sant Pau Hospital, in Barcelona, will have important consequences in the development of new anti-tumor therapies. On the one hand, the study shows a better understanding of the basic mechanisms of gene regulation and, on the other hand, identifies a possible new pathway to reactivate erroneously “switched off” genes in tumors. In 2002, in a study published in Science, Di Croce showed that uncontrolled DNA methylation contributed to tumor progression in its first stages. Less than a year ago, Di Croce’s group described, in another study published in Nature, the biochemical connection between the Polycomb protein complex and the enzymes methylating the DNA (DNA methyltransferases).

In this new study, Di Croce has shown that the two mechanisms are not only interconnected in leukemic cells, but also that one reinforces the other and, more importantly, that one needs the other. Therefore - and this is one of the most interesting aspects of the investigation - if one of these mechanisms is blocked by specific drugs, the other will also be affected. The results achieved will allow, in the future, identifying new chemical compounds able to block both mechanisms simultaneously and exclusively, without altering other cellular mechanisms. For these reasons, this is one of the new investigations lines recently adopted by the group led by Di Croce.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

Further reports about: Croce connection leukemia off”

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>