Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The unexpected connection of two gene regulation mechanisms points to new ways for the fight against leukemia

When the activity of individual genes it is longer required, there are two main mechanisms responsible for the “switching off”, mainly DNA methylation and the Polycomb protein complex.

Sometimes, these mechanisms lose their efficiency and some of the genes that should be “switched off” remain active. This, in turn, could lead to uncontrolled cellular proliferation, and tumorigenesis. These mechanisms, present both in lower organisms as well as in mammals, have always been thought to be separated and independent.

The work, which appears on the cover this week in the June issue of the prestigious journal Cancer Cell, carried out by researchers of the Differentiation and Cancer Programme, at the Centre for Genomic Regulation (CRG), in Barcelona (Spain), demonstrates the cross-talk between these two gene silencing mechanisms in patients suffering from acute leukemia. The work, led by the ICREA researcher Luciano Di Croce, head of the group Epigenetics and Cancer, at the CRG, performed in collaboration with Kristian Helin’s group, at the Biotech Research and Innovation Centre in Copenhagen (Denmark), and Dr. Nomdedeu’s group, at the Santa Creu and Sant Pau Hospital, in Barcelona, will have important consequences in the development of new anti-tumor therapies. On the one hand, the study shows a better understanding of the basic mechanisms of gene regulation and, on the other hand, identifies a possible new pathway to reactivate erroneously “switched off” genes in tumors. In 2002, in a study published in Science, Di Croce showed that uncontrolled DNA methylation contributed to tumor progression in its first stages. Less than a year ago, Di Croce’s group described, in another study published in Nature, the biochemical connection between the Polycomb protein complex and the enzymes methylating the DNA (DNA methyltransferases).

In this new study, Di Croce has shown that the two mechanisms are not only interconnected in leukemic cells, but also that one reinforces the other and, more importantly, that one needs the other. Therefore - and this is one of the most interesting aspects of the investigation - if one of these mechanisms is blocked by specific drugs, the other will also be affected. The results achieved will allow, in the future, identifying new chemical compounds able to block both mechanisms simultaneously and exclusively, without altering other cellular mechanisms. For these reasons, this is one of the new investigations lines recently adopted by the group led by Di Croce.

Gloria Lligadas | alfa
Further information:

Further reports about: Croce connection leukemia off”

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>