In a triumph for pests, scientists have figured out how to make the fruit fly live longer.
But humans still may get something out of the deal. As reported online in Nature Chemical Biology, the discovery that a single protein can inhibit aging holds implications for human longevity and for treatment of some of the world’s most feared diseases.
“This work is important for two reasons,” said study author Richard Roberts, associate professor of chemistry, chemical engineering and biology at the University of Southern California.
“First, it demonstrates that a single inhibitor can dramatically alter lifespan, a very complex trait. It is remarkable that you can alter it with a single genetic change.
“We don’t really need to make fruit flies live longer, but if we understand how to do this, our approach may have direct application to higher organisms, such as ourselves.”
Secondly, Roberts said, the method used by his research group to make the inhibiting proteins “opens the possibility of developing a lot of new therapeutics.”
The study describes a new method for blocking receptors involved in aging and disease across many species, including humans.
Receptors are proteins that transmit signals across a cell membrane. In the fruit fly, Roberts and his team manufactured short proteins that blocked a receptor involved in fruit fly aging, as previously demonstrated by co-author Seymour Benzer of Caltech.
Flies with a blocked receptor saw their lives extended by a third, with no apparent side effects.
The same blocking strategy should work in all such receptors, known as class B GPCRs (for G protein-coupled receptors). Many GPCRs figure prominently in disease as well as in normal development, Roberts said.
“It is the most targeted family of receptors” by drug manufacturers, Roberts said, estimating that a quarter of all pharmaceuticals focus on GPCRs.
“This approach should be generally applicable.”
And generally powerful, given that GPCRs are notoriously unstable and difficult to work with. The Roberts group went around the problem by cutting off the unstable part of the receptor and running experiments only on the part of the receptor that sticks out of the cell.
Though there were no guarantees that inhibiting one part of the receptor would incapacitate the whole, the strategy succeeded.
Roberts’ method builds on his co-discovery, in 1997, of a simple method for building libraries of trillions of short proteins, or peptides.
Unlike DNA, which can be copied and multiplied millions of times with polymerase chain reaction (PCR), proteins cannot be copied directly.
But Roberts and Jack Szostak of Massachusetts General Hospital thought of fusing peptides to the bits of messenger RNA that contained their sequence.
“Essentially, we developed a way to do PCR on proteins,” Roberts said.
The use of RNA-peptide fusions allowed the easy creation and multiplication of randomly generated peptides. Roberts termed this approach “Irrational Design.”
In the new study, Roberts and his group literally threw trillions of peptides at the receptor and saved the ones that stuck.
“We let the molecules themselves decide if they bind, rather than trying to design them rationally,” he said.
After multiple cycles, the researchers had a group of peptides that stuck to the receptor and not to any other protein.
Fruit flies genetically altered to produce such peptides lived longer, suggesting that the peptides were interfering with the receptor’s normal function.
Why these particular peptides work, and why the receptor they target plays such an important role in fruit fly aging, remain the bigger and as yet unanswered questions.
Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu
Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics
Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme
Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
World's smallest optical implantable biodevice
26.04.2018 | Power and Electrical Engineering
Molecular evolution: How the building blocks of life may form in space
26.04.2018 | Life Sciences
First Li-Fi-product with technology from Fraunhofer HHI launched in Japan
26.04.2018 | Power and Electrical Engineering