Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly found sensing system enables certain bacteria to resist human immune defenses

11.06.2007
Researchers at the National Institute of Allergy and Infectious Diseases (NIAID), a component of the National Institutes of Health, have discovered a survival mechanism in a common type of bacteria that can cause illness. The mechanism lets the bacteria protect itself by warding off attacks from antimicrobial peptides (AMPs), which are defense molecules sent by the body to kill bacteria.

Bacteria are divided into two types, gram-positive and gram-negative, with the primary difference being the nature of the bacterial cell wall. Little is known about how gram-positive bacteria—such as those that can lead to food poisoning, skin disorders and toxic shock—avoid being killed by AMPs. AMPs are made by virtually all groups of organisms, including amphibians, insects, several invertebrates and mammals, including humans.

“Gram-positive bacteria are major threats to human health, especially due to increasing problems with drug resistance, and these findings may help chart a path to designing new drugs to bolster our antimicrobial treatment options,” notes NIAID Director Anthony S. Fauci, M.D.

Led by Michael Otto, Ph.D., of NIAID’s Rocky Mountain Laboratories (RML), the scientists used the gram-positive bacterium Staphylococcus epidermidis to study its response to a specific human AMP, human beta defensin 3. S. epidermidis is one of several hard-to-treat infectious agents that can be transmitted to patients in hospitals via contaminated medical implants. Findings by Dr. Otto’s research group are published in the May 29 issue of the Proceedings of the National Academy of Science. Other well-known types of gram-positive bacteria include agents that cause anthrax, strep throat, flesh-eating disease and various types of food poisoning.

... more about:
»AMP »Gram-positive »antimicrobial »type

In gram-negative bacteria—such as those that cause plague and salmonellosis—a sensory and gene regulation system named PhoP/PhoQ protects invading bacteria, and scientists believe if they develop a better understanding of this system they could develop new drugs that are more effective at protecting people from infection.

Likewise, now Dr. Otto and his research group are hoping for similar possibilities for gram-positive bacteria with their discovery of “aps,” which stands for antimicrobial peptide sensor. Aps has three parts: apsS, the sensor region; apsR, the gene regulation region; and apsX, which has an unknown function that Dr. Otto’s group is investigating. Studies show that all three components of aps must be present for the system to function and effectively protect bacteria from AMPs.

“We are aware that for gram-negative bacteria, PhoP/PhoQ has been called a premier target for antimicrobial drug discovery, but little corresponding work has been done with gram-positive bacteria,” Dr. Otto says. “Our group is excited by what we have demonstrated—an efficient and unique way that gram-positive bacteria control resistance—and we are continuing our investigation of the aps sensing system being used for drug development.”

Ken Pekoc | EurekAlert!
Further information:
http://www.nih.gov
http://www.niaid.nih.gov

Further reports about: AMP Gram-positive antimicrobial type

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>