Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake venom as medication?

11.06.2007
A chemist at the Vienna University of Technology (TU Vienna) is looking for unusual structures in snake venom and plans to prove their medical effectiveness. What in the 1950s led to the development of Captopril, a drug for the treatment of hypertension, is being continued in an interesting new chapter with the analysis of venom from South American pit vipers and tropical rattlesnakes.

"We receive the snake venom as a yellow crystalline powder in ampules directly from the 'Instituto Butantan' (http://www.butantan.gov.br/) in São Paulo, Brazil. That is a well-known scientific institution, also popular with tourists, which studies some of the most poisonous snake species in the world," explains Martina Marchetti, assistant professor at the Institute for Chemical Technologies and Analytics at the Vienna University of Technology (TU Vienna).

Her investigations focus on the venoms of four different pit vipers (Bothrops) as well as a tropical rattlesnake (Crotalus durissus terrificus). All five species are native to South America. They are among the most aggressive snake varieties there. Every year in South America, 2.5 million people are bitten by snakes. About 100,000 die as a result.

Marchetti analyzes the snake venoms by various methods. She and her coworkers use lab-on-a-chip technology to determine the composition of the toxins and analyze peptide chains (linear sequences of amino acids). The structures of individual members of these chains are then analyzed using tandem mass spectrometry. Two-dimensional gel electrophoresis offers another option for separating samples by molecular weight and pH. According to Marchetti, "Not every snake venom is the same. Time and again we encounter unusual new structures. The goal of our research is to find out why individual components of the venom act in a particular way and what they may have to offer to the pharmaceutical industry." A deliberately administered toxic effect in the right amount can actually be beneficial to human health. Snake toxins have a very broad field of potential use, including antibacterial applications, cell growth inhibition, nerve stimulation, blood thinning and clotting. Their effects are also being tested for the treatment of Alzheimer's disease.

As a result of proteome research, which has become popular in recent years, a number of new analytical methods have been developed. Combinations of these methods allow to uncover clues in order to solve the riddle of the medical effectiveness of snake venom. Of course, another goal is to develop effective antivenoms, which, according to Marchetti, "might some day be available to take along in tablet form."

Her investigations have been conducted in collaboration with Walter Welz at the Johannes Kepler University in Linz. Researchers first noticed the pharmacological effectiveness of snake venoms in the process of developing antisera. Such investigations in the 1950s resulted in the development of the hypertension drug Captopril, for which the structural information from a peptide (protein) isolated from snake venom served as an archetype.

Daniela Ausserhuber | alfa
Further information:
http://www.tuwien.ac.at/index.php?id=3880
http://www.tuwien.ac.at/aktuelles/news_detail/article/4016/16/

Further reports about: Marchetti analyze effectiveness investigations

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>