Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake venom as medication?

11.06.2007
A chemist at the Vienna University of Technology (TU Vienna) is looking for unusual structures in snake venom and plans to prove their medical effectiveness. What in the 1950s led to the development of Captopril, a drug for the treatment of hypertension, is being continued in an interesting new chapter with the analysis of venom from South American pit vipers and tropical rattlesnakes.

"We receive the snake venom as a yellow crystalline powder in ampules directly from the 'Instituto Butantan' (http://www.butantan.gov.br/) in São Paulo, Brazil. That is a well-known scientific institution, also popular with tourists, which studies some of the most poisonous snake species in the world," explains Martina Marchetti, assistant professor at the Institute for Chemical Technologies and Analytics at the Vienna University of Technology (TU Vienna).

Her investigations focus on the venoms of four different pit vipers (Bothrops) as well as a tropical rattlesnake (Crotalus durissus terrificus). All five species are native to South America. They are among the most aggressive snake varieties there. Every year in South America, 2.5 million people are bitten by snakes. About 100,000 die as a result.

Marchetti analyzes the snake venoms by various methods. She and her coworkers use lab-on-a-chip technology to determine the composition of the toxins and analyze peptide chains (linear sequences of amino acids). The structures of individual members of these chains are then analyzed using tandem mass spectrometry. Two-dimensional gel electrophoresis offers another option for separating samples by molecular weight and pH. According to Marchetti, "Not every snake venom is the same. Time and again we encounter unusual new structures. The goal of our research is to find out why individual components of the venom act in a particular way and what they may have to offer to the pharmaceutical industry." A deliberately administered toxic effect in the right amount can actually be beneficial to human health. Snake toxins have a very broad field of potential use, including antibacterial applications, cell growth inhibition, nerve stimulation, blood thinning and clotting. Their effects are also being tested for the treatment of Alzheimer's disease.

As a result of proteome research, which has become popular in recent years, a number of new analytical methods have been developed. Combinations of these methods allow to uncover clues in order to solve the riddle of the medical effectiveness of snake venom. Of course, another goal is to develop effective antivenoms, which, according to Marchetti, "might some day be available to take along in tablet form."

Her investigations have been conducted in collaboration with Walter Welz at the Johannes Kepler University in Linz. Researchers first noticed the pharmacological effectiveness of snake venoms in the process of developing antisera. Such investigations in the 1950s resulted in the development of the hypertension drug Captopril, for which the structural information from a peptide (protein) isolated from snake venom served as an archetype.

Daniela Ausserhuber | alfa
Further information:
http://www.tuwien.ac.at/index.php?id=3880
http://www.tuwien.ac.at/aktuelles/news_detail/article/4016/16/

Further reports about: Marchetti analyze effectiveness investigations

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>