Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new contributor to aggressive cancers

08.06.2007
Mutations in the cell adhesion molecule known as integrin alpha 7 (integrin á7) lead to unchecked tumor cell proliferation and a significantly higher incidence in cancer spread, or metastasis, in several cancer cell lines, report researchers at the University of Pittsburgh School of Medicine in a study being published today in the Journal of the National Cancer Institute. These findings suggest that integrin á7 represents an important new target for cancer therapy and prevention.

Integrin á7 belongs to a major class of cell membrane proteins that play a role in the attachment of a cell to the extracellular matrix (ECM), which is the material that holds cells within a particular type of tissue together. Integrins also help cells attach to one another and are involved in transmitting chemical signals between cells and the ECM.

In this study, the researchers, led by Jianhua Luo, M.D., Ph.D., associate professor in the division of molecular and cellular pathology, University of Pittsburgh School of Medicine, examined whether this gene is mutated in specimens of various human cancers as well as whether the level of integrin á7 expression is associated with clinical relapse of human cancers. They also investigated whether integrin á7 has tumor suppressor activity.

To determine whether mutations in integrin á7 contribute to cancer, Dr. Luo and his collaborators sequenced the integrin á7 genes from 66 human cancer specimens and cell lines representing a number of different kinds of cancer, including cancer of the prostate, liver, brain (glioblastoma) and muscle (leiomyosarcoma).

They found mutations in the integrin á7 gene, particularly those that resulted in an abnormally shortened protein product, or truncation, in 16 of 28 prostate cancers. They also found truncation-inducing mutations in five of 24 liver cancer samples, five of six glioblastomas, and one of four leiomyosarcomas.

Integrin á7 mutations also were associated with a significant increase in the recurrence of cancer among patients. Nine of 13 prostate cancer patients with integrin á7 mutations experienced a recurrence of their cancer after radical prostatectomy versus only one of eight prostate cancer patients without such mutations. There were five recurrences among eight hepatocellular carcinoma patients with integrin á7 mutations versus only one recurrence of cancer among 16 patients without such mutations.

To examine the effect of alterations in the level of integrin á7 on tumor formation, the researchers assessed the ability of cancer cells to form colonies in a standard growth medium after increasing or decreasing the level of normal integrin á7 in the cell lines. In this experiment, control cancer cells formed large colonies with up to 100 cells each. Cancer cells with normal levels of integrin á7 expression formed fewer and smaller colonies. When the investigators decreased the level of integrin á7 in two cancer cells lines using siRNAs, or silencing RNAs, both cell lines formed more colonies and grew better than corresponding control cell lines.

“When we increased levels of normal integrin á7 in cancer cells, they grew at a much slower rate. This suggests that this protein is a fairly potent tumor suppressor,” said Dr. Luo.

Dr. Luo and his coworkers then investigated the role of integrin á7 in metastasis by examining the relationship between the level of integrin á7 expression and cell migration by increasing the expression of normal integrin á7 in three cell lines. The migration rate was significantly reduced in all of the cells compared to those in which the expression of integrin á7 remained deficient, suggesting that the level of normal integrin á7 expression is inversely associated with tumor cell migration.

Finally, to investigate whether normal integrin á7 possesses tumor suppressor activity, the researchers implanted human cancer cells into immune deficient mice. Some mice received tumor cells in which levels of integrin á7 were increased, others received tumor cells in which the levels of normal integrin á7 were decreased. Six weeks after mice were implanted with cancer cells in which levels of normal integrin á7 were deficient, they had tumors with an average volume about four times as large as mice with implanted cancer cells in which normal integrin á7 levels were increased. Similarly, the researchers found no visible metastasis in mice with tumors in which levels of normal integrin á7 had been increased. On the other hand, they did find evidence of metastasis in three of 12 mice with one type of tumor deficient in normal integrin á7 and in four of the 12 mice with another type of tumor deficient in normal integrin á7. Furthermore, the six-week survival of mice bearing tumors with increased levels of normal integrin á7 was higher than that of mice bearing tumors in which normal integrin á7 had not been experimentally increased. Thus, increasing the level of normal integrin á7 in tumors was associated with decreased tumor growth and metastasis in this animal model.

According to Dr. Luo and his coworkers, these findings suggest that not only is integrin á7 an important tumor suppressor, but it is potentially a critical new target for cancer treatment.

“Our study shows rather definitively that when we experimentally decreased the level of integrin á7 protein or the protein was naturally mutated in cells, those cells lost their inhibitory signals for both cell migration and proliferation. This suggests that the loss of integrin á7 activity may lead to unchecked tumor cell proliferation and a significantly increased risk of tumor metastasis. More importantly, it suggests that if we can somehow restore normal integrin á7 levels in tumor cells in vivo, we may be able to reduce the risk of them spreading to other sites, which would be a significant achievement in cancer therapy,” explained Dr. Luo.

Jim Swyers | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: Integrin Luo colonies decreased deficient mutations recurrence tumor suppressor

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>