Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria and Epstein-Barr Virus Linked to Pediatric Cancer in Africa

08.06.2007
Endemic Burkitt lymphoma is a form of cancer that accounts for up to 74% of malignant disorders in children in equatorial Africa. Malaria and Epstein-Barr virus (EBV) are known cofactors in its development, but to date, their relative contribution has not been well understood.

In a new study published online in the open-access journal PLoS Pathogens, researchers at the Karolinska Institutet in Stockholm explain how certain Plasmodium falciparum antigens directly induce Epstein-Barr virus (EBV) reactivation, increasing the risk of Burkitt lymphoma.

EBV is a ubiquitous virus that establishes a lifelong persistence following primary infection. How EBV affects its host hinges on a balance between viral latency, viral replication, and host immune responses. Generally harmless in almost every host and rarely a cause of disease, reactivation of EBV has been causally associated with various cancers. Acute malaria infection is known to increase the level of circulating EBV, but the precise mechanisms through which this virus reactivation occurs had been previously unknown.

Now, Arnaud Chêne and colleagues have identified CIDR1a as the first microbial protein able to spur a latently EBV-infected cell into active production. Their results suggest that P. falciparum-derived proteins can lead to a direct reactivation of EBV during acute malaria infection, increasing the risk of Burkitt lymphoma development for children living in malaria-endemic areas.

... more about:
»EBV »Epstein-Barr »Malaria »reactivation

This work was supported by grants from the Karolinska Institutet, the Swedish International Development Cooperation, Malaria and EBV Reactivation Agency (Sida/SAREC), Barncancerfonden, the Swedish Research Council (VR), and the Swedish Foundation for Strategic Research.

CITATION: Chêne A, Donati D, Guerreiro-Cacais AO, Levitsky V, Chen Q, et al. (2007) A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog 3(6): e80.

doi:10.1371/journal.ppat.0030080

CONTACT:
Arnaud Chêne
Karolinska Institutet
MTC / KI
Tomtebodavägen 12C Box 280
Stockholm, S-17177
Sweden
+46 8 457 25 22
+46 8 31 05 25 (fax)
Arnaud.Chene@ki.se

Andrew Hyde | alfa
Further information:
http://www.plospathogens.org
http://pathogens.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.ppat.0030080

Further reports about: EBV Epstein-Barr Malaria reactivation

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>