Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Malaria and Epstein-Barr Virus Linked to Pediatric Cancer in Africa

Endemic Burkitt lymphoma is a form of cancer that accounts for up to 74% of malignant disorders in children in equatorial Africa. Malaria and Epstein-Barr virus (EBV) are known cofactors in its development, but to date, their relative contribution has not been well understood.

In a new study published online in the open-access journal PLoS Pathogens, researchers at the Karolinska Institutet in Stockholm explain how certain Plasmodium falciparum antigens directly induce Epstein-Barr virus (EBV) reactivation, increasing the risk of Burkitt lymphoma.

EBV is a ubiquitous virus that establishes a lifelong persistence following primary infection. How EBV affects its host hinges on a balance between viral latency, viral replication, and host immune responses. Generally harmless in almost every host and rarely a cause of disease, reactivation of EBV has been causally associated with various cancers. Acute malaria infection is known to increase the level of circulating EBV, but the precise mechanisms through which this virus reactivation occurs had been previously unknown.

Now, Arnaud Chêne and colleagues have identified CIDR1a as the first microbial protein able to spur a latently EBV-infected cell into active production. Their results suggest that P. falciparum-derived proteins can lead to a direct reactivation of EBV during acute malaria infection, increasing the risk of Burkitt lymphoma development for children living in malaria-endemic areas.

... more about:
»EBV »Epstein-Barr »Malaria »reactivation

This work was supported by grants from the Karolinska Institutet, the Swedish International Development Cooperation, Malaria and EBV Reactivation Agency (Sida/SAREC), Barncancerfonden, the Swedish Research Council (VR), and the Swedish Foundation for Strategic Research.

CITATION: Chêne A, Donati D, Guerreiro-Cacais AO, Levitsky V, Chen Q, et al. (2007) A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog 3(6): e80.


Arnaud Chêne
Karolinska Institutet
Tomtebodavägen 12C Box 280
Stockholm, S-17177
+46 8 457 25 22
+46 8 31 05 25 (fax)

Andrew Hyde | alfa
Further information:

Further reports about: EBV Epstein-Barr Malaria reactivation

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>