Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research brightens prospects for using nature’s smallest candles in medical applications

In a way, nanotubes are nature’s smallest candles.

These tiny tubes are constructed from carbon atoms and they are so small that it takes about 100,000 laid side-by-side to span the width of a single human hair. In the last five years, scientists have discovered that some individual nanotubes are fluorescent. That is, they glow when they are bathed in light. Some glow brightly. Others glow dimly. Some glow in spots. Others glow all over.

Until now, this property has been largely academic. But researchers from the Vanderbilt Institute of Nanoscale Science and Engineering (VINSE) have removed an obstacle that has restricted fluorescent nanotubes from a variety of medical applications, including anti-cancer treatments. In a paper published online in the Journal of the American Chemical Society on June 7, they describe a method that can successfully produce large batches of highly fluorescent nanotubes.

“Nanotubes have a number of characteristics that make them particularly suitable for use as contrast agents in cells and tissues,” says Tobias Hertel, the associate professor of physics who headed the research. “Now that we know how to separate out the brightest ones, I hope that researchers will begin considering ways to use them in clinical applications.”

The figure of merit for fluorescence is quantum efficiency: the ratio of the number of photons of light that a device emits to the number of photons it absorbs in the process. The VINSE team reports that they can produce populations containing trillions of nanotubes with a quantum efficiency of 1 percent, a factor of 100 better than previous ensemble measurements and close to the best quantum efficiencies reported for individual nanotubes.

The methods researchers use to produce nanotubes creates soot that contains a number of different types of nanotubes: metallic, semiconducting, double-walled, single-walled, etc. Of these, only the single-walled semiconducting nanotubes, or SWNTs, are capable of producing light. Metallic nanotubes actually inhibit the brightness of their fluorescent neighbors. But it has been very difficult to separate the strongly fluorescent SWNTs from all the rest in large quantities.

Nanotube soot is insoluble in water. So researchers routinely mix it with special soap and give it a dose of ultrasound to break apart clumps of nanotubes and force them to dissolve. The result is a dark liquid that is routinely put into an ultracentrifuge that subjects them to forces a few thousand times that of gravity. Centrifuging separates out a number of gross impurities.

Hertel’s team discovered that if they remove the most buoyant layer from the centrifuge, let it set for a while and then put it back in the ultracentrifuge for another 12 hours, the liquid separates into a number of distinct layers. The topmost layer has a purple color and, when analyzed, proves to contain a surprisingly uniform population of the brightest nanotubes.

The researchers had expected this approach to boost the quantum efficiency by five to ten times. The fact that the improvement was considerably larger – 20 to 100 times – came as a pleasant surprise.

“Quantum efficiency is critical, but there are several other factors that make nanotubes particularly well suited for use in living systems,” says Hertel. These factors include:

· Nanotubes emit light in a very narrow range of wavelengths, or colors. This makes it easier to pick out their signal against background noise. Furthermore, they produce light in a part of the spectrum – the near infrared where skin and other tissue is transparent – that allows the nanotube light to stand out.

· Nanotubes are made entirely from graphitic carbon, which is non-toxic and, at least so far, experiments that have been done indicate that they do not damage living cells. By comparison, quantum dots, which are a popular alternative fluorescent tagging technology, contain cadmium, which is highly toxic, and so may not be appropriate for “in vivo” applications.

· Nanotube fluorescence is extremely stable and can last for months. Fluorescent proteins – widely used for imaging living systems – begin fading within a few hours. Quantum dots last several days before degrading.

Hertel’s team is currently working on the next step necessary for many biomedical uses: finding a way to attach molecules to the surface of the nanotubes that will allow them to bind to specific biological targets. The trick is to do so without dimming or extinguishing the nanotubes’ delicate fluorescence.

An example of the possible medical applications of nanotube fluorescence is a collaboration that Hertel and Associate Professor of Biomedical Research Duco Jansen are planning. Jansen has been pursuing research that uses gold nanoclusters to burn away cancer cells. He has developed a selective method for attaching the gold clusters to the surface of tumors and then exposing them to wavelengths of light that cause them to grow hot enough to destroy nearby cells. The approach has one drawback: He doesn’t have an easy way to identify the locations where the clusters attach. Nanotubes should work as well as gold clusters as microscopic blow torches while their fluorescence should make them easy to locate. At least that is the hypothesis the researchers hope to test.

Hertel’s co-authors on the paper are Vanderbilt graduate student Jared Crochet and Michael Clemens, a graduate student from Brigham Young University. The research was funded by grants from the American Chemical Society and the National Science Foundation.

David F. Salisbury | Vanderbilt University
Further information:

Further reports about: Efficiency Medical Nanotube Quantum fluorescence fluorescent

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>