Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How sneaky HIV escapes cells

Like hobos on a train, HIV, the virus that causes AIDS, uses a pre-existing transport system to leave one infected cell and infect new ones, Hopkins scientists have discovered.

Their findings, published in the June issue of Plos Biology, counter the prevailing belief that HIV and other retroviruses can only leave and enter cells by virus-specific mechanisms.

“It appears that cells make HIV and other retroviruses by a naturally occurring export mechanism,” says Stephen Gould, Ph.D., Professor of Biological Chemistry at Johns Hopkins. Cells normally export certain membrane-bound molecules to the outside world by means of small sacs known as exosomes. By studying human T-cells under a microscope, Gould, Yi Fang, Ning Wu, and other members of his team discovered what’s needed to qualify proteins for exosomal travel.

“Surprisingly, all that’s needed for a protein to get out of the cell in exosomes are the ability to clump together and attach to the cell’s membrane,” Gould says.

... more about:
»Gould »HIV »exosome

In one experiment, Gould and his team added chemicals to normal human cells that force nearby proteins together into a clump, and this was enough to get them sent out of the cell in exosomes. If they added a tether to force naturally-clumping proteins inside the cell to the membrane, the proteins met a similar exosomal deportation fate.

The major HIV protein ‘Gag’ has both of these properties that cells sense in selecting exosomal cargoes. When the researchers removed the tethers or clumping signals from Gag it could no longer get out of the cell. However, if they were replaced with synthetic membrane anchors and clumping domains Gag regained its ability to get out of cells in exosomes.

Gould speculates that cells may have initially developed exosomes as a quality control mechanism to get rid of clumped proteins, which are generally broken and useless. However, just as retroviruses exploit other cell processes for their own ends, it now appears they rely on exosomes to get out of infected cells and infect fresh cells. As such, drugs that interfere with exosome formation might be one way to inhibit HIV infections.

“Viruses like HIV use pathways we barely recognize, much less understand,” Gould says. “Our paper highlights the importance of studying their basic biochemistry and cell biology, which can yield a better understanding of normal human biology as well as identify new avenues in the fight against human disease.”

Nick Zagorski | EurekAlert!
Further information:

Further reports about: Gould HIV exosome

More articles from Life Sciences:

nachricht How the African clawed frog got an extra pair of genes: Whole genome sequence reveals evolutionary history of Xenopus laevis
27.10.2016 | Hokkaido University

nachricht Mitochondria control stem cell fate
27.10.2016 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How a fungus inhibits the immune system of plants

27.10.2016 | Life Sciences

Mitochondria control stem cell fate

27.10.2016 | Life Sciences

The gene of autumn colours

27.10.2016 | Life Sciences

More VideoLinks >>>