Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find stem cells in colorectal tumors

05.06.2007
Researchers at the Stanford University School of Medicine have identified the cancer stem cells that propagate tumors in colon and rectal cancer, a discovery that could lead to improved treatment of this deadly cancer.

These are the latest class of cancer stem cells tracked down by a large, interdisciplinary group of researchers led by Michael Clarke, MD. The discovery is reported in the June 4 advance online edition of the Proceedings of the National Academy of Sciences.

"This work will enable us to better understand how to identify these cells, and to do molecular studies to find potential new therapies," said Clarke, the senior author of the paper and the Karel H. and Avice N. Beekhuis Professor in Cancer Biology.

Clarke was the first to find cancer stem cells in a solid tumor - in this case, breast cancer - in 2003 while working at the University of Michigan. Since coming to Stanford in 2005, he joined existing efforts that have resulted in finding cancer stem cells in head and neck, pancreatic and now colorectal tumors.

These stem cells act like a spring at the source of a creek, constantly dividing to produce new tumor cells. Although the other tumor cells can divide and cause damage through their sheer bulk, they are shorter lived and can't maintain the tumor's growth. The cancer stem cells are also likely to be responsible when tumors spread to distant sites.

Identifying new cancer stem cells has been a major push within Stanford's Institute for Stem Cell Biology and Regenerative Medicine, where Clarke serves as associate director. Irving Weissman, MD, director of the institute, said he hopes Stanford researchers will develop cancer therapies that specifically kill these cancer stem cells, eradicating the cancer entirely. Current therapies may kill the bulk of the tumor cells, but if any cancer stem cells remain the tumor will resurface or spread.

"We have brought together a team of scientists and clinicians who will help find the weak points in cancer, devise new immune and molecular diagnostics and therapeutics, test them in mice that carry the cancer stem cells and, hopefully, in a few years begin to test them in our patients," Weissman said.

The colorectal cancer stem cells highlight the importance of a protein that is a familiar face to this group of cancer researchers. A protein called CD44 that has already been found dotting the surface of both breast and head and neck cancer stem cells also turns up on the colorectal cancer stem cells. To Piero Dalerba, MD, postdoctoral scholar and first author of the paper, that finding could simply reflect the fact that all of those tumors arise from similar tissue. It could also mean that a similar therapy could target all three cell types.

Dalerba also found a novel protein on the colorectal cancer stem cells, called CD166, that had not previously been associated with cancer stem cells. "This is one of the major novelties of this paper," he said. This protein could be a unique target for identifying and treating colorectal cancers.

Colon and rectal cancers are the second-most common cause of cancer-related deaths in the United States, killing more than 50,000 people each year. The tumors often go undetected until they are at a later stage and are difficult to treat. Treatment can include chemotherapy, radiation or surgery. However, Andrew Shelton, MD, assistant professor of surgery who treats colon cancer patients and participated in this study, said it's often hard to know which patients will respond best to the different treatment options.

Shelton said that grouping patients according to the treatments most likely to work for them is one possible future benefit of finding the cancer stem cells. In breast cancer, Clarke and another team of researchers recently found a group of genes that show unique patterns of being turned on or off in people who either do or don't respond well to treatment. The group hopes to do similar work with the colorectal cancer stem cells as a first step in identifying patients who may need more aggressive treatment.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

Further reports about: Protein Stem Treatment colorectal colorectal cancer

More articles from Life Sciences:

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>