Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find stem cells in colorectal tumors

05.06.2007
Researchers at the Stanford University School of Medicine have identified the cancer stem cells that propagate tumors in colon and rectal cancer, a discovery that could lead to improved treatment of this deadly cancer.

These are the latest class of cancer stem cells tracked down by a large, interdisciplinary group of researchers led by Michael Clarke, MD. The discovery is reported in the June 4 advance online edition of the Proceedings of the National Academy of Sciences.

"This work will enable us to better understand how to identify these cells, and to do molecular studies to find potential new therapies," said Clarke, the senior author of the paper and the Karel H. and Avice N. Beekhuis Professor in Cancer Biology.

Clarke was the first to find cancer stem cells in a solid tumor - in this case, breast cancer - in 2003 while working at the University of Michigan. Since coming to Stanford in 2005, he joined existing efforts that have resulted in finding cancer stem cells in head and neck, pancreatic and now colorectal tumors.

These stem cells act like a spring at the source of a creek, constantly dividing to produce new tumor cells. Although the other tumor cells can divide and cause damage through their sheer bulk, they are shorter lived and can't maintain the tumor's growth. The cancer stem cells are also likely to be responsible when tumors spread to distant sites.

Identifying new cancer stem cells has been a major push within Stanford's Institute for Stem Cell Biology and Regenerative Medicine, where Clarke serves as associate director. Irving Weissman, MD, director of the institute, said he hopes Stanford researchers will develop cancer therapies that specifically kill these cancer stem cells, eradicating the cancer entirely. Current therapies may kill the bulk of the tumor cells, but if any cancer stem cells remain the tumor will resurface or spread.

"We have brought together a team of scientists and clinicians who will help find the weak points in cancer, devise new immune and molecular diagnostics and therapeutics, test them in mice that carry the cancer stem cells and, hopefully, in a few years begin to test them in our patients," Weissman said.

The colorectal cancer stem cells highlight the importance of a protein that is a familiar face to this group of cancer researchers. A protein called CD44 that has already been found dotting the surface of both breast and head and neck cancer stem cells also turns up on the colorectal cancer stem cells. To Piero Dalerba, MD, postdoctoral scholar and first author of the paper, that finding could simply reflect the fact that all of those tumors arise from similar tissue. It could also mean that a similar therapy could target all three cell types.

Dalerba also found a novel protein on the colorectal cancer stem cells, called CD166, that had not previously been associated with cancer stem cells. "This is one of the major novelties of this paper," he said. This protein could be a unique target for identifying and treating colorectal cancers.

Colon and rectal cancers are the second-most common cause of cancer-related deaths in the United States, killing more than 50,000 people each year. The tumors often go undetected until they are at a later stage and are difficult to treat. Treatment can include chemotherapy, radiation or surgery. However, Andrew Shelton, MD, assistant professor of surgery who treats colon cancer patients and participated in this study, said it's often hard to know which patients will respond best to the different treatment options.

Shelton said that grouping patients according to the treatments most likely to work for them is one possible future benefit of finding the cancer stem cells. In breast cancer, Clarke and another team of researchers recently found a group of genes that show unique patterns of being turned on or off in people who either do or don't respond well to treatment. The group hopes to do similar work with the colorectal cancer stem cells as a first step in identifying patients who may need more aggressive treatment.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

Further reports about: Protein Stem Treatment colorectal colorectal cancer

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>