Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers track human stem cells transplanted into rat brain

05.06.2007
Researchers at the Stanford University School of Medicine have illuminated the path taken by human neural stem cells that were transplanted into the brains of rats and mice, and found that the cells successfully navigate toward areas damaged by stroke.

The research group placed miniscule particles of iron inside stem cells to act as cellular beacons detected by magnetic resonance imaging. With the ability to monitor where the human stem cells go in real time, researchers will have an easier time learning the best way of using the cells to treat human neural disorders, such as stroke, traumatic brain injury, Parkinson's disease or radiation damage.

The findings, to be published in the June 4 advance online version of the Proceedings of the National Academy of Sciences, could eventually make it possible to track human stem cells that are transplanted into the brains of patients.

Gary Steinberg, MD, PhD, who led the research group, said the work also shows that the iron doesn't disrupt the normal function of the stem cells. "This work is important because if a method of tracking the cells changes their biology, it will not be helpful," said Steinberg, senior author of the paper and the Bernard and Ronni Lacroute-William Randolph Hearst Professor in Neurosurgery and Neurosciences.

... more about:
»Iron »Stem »TRACK »neural »particles »transplanted »trial

In a 2006 study, Steinberg and his colleagues had shown that the same human stem cells used in this study were able to migrate toward a brain region in rats that mimicked a human stroke. They also found that those cells matured into the types of cells they would expect to find in that part of the brain.

The only problem was that in order to find out where the cells ended up, they had to kill the rats - not an approach that can be used for human clinical trials. What the researchers needed was a way of tracking the stem cells in real time to find out whether cells migrated appropriately and survived.

Steinberg said that the iron particles, called superparamagnetic iron oxide or SPIO, have been used for more than a decade to track cells in living animals, including in rat neural stem cells. If the point is to use the technique in humans, he and postdoctoral scholar Raphael Guzman, MD, wanted to make sure that the particles worked in human cells as well.

"I think it's critical that we are applying this technique in human stem cells that can be used in human clinical trials," said Guzman, who is lead author of the paper. He said that because they chose to work with those cells, their results can be directly translated to human trials.

They were reassured that putting the iron particles in the cells didn't change the stem cells' biological properties. Also, when the group placed those iron-filled human neural stem cells into the brains of rats - either healthy fetal and adult rats or those that had experienced a stroke - the cells behaved as expected in each case.

In fetal mice with brains still developing, the group injected stem cells into the fluid-filled brain regions called ventricles. From there, the iron-filled cells migrated along the path that stem cells normally take to populate the developing brain. Those stem cells also matured into the proper types of brain cells.

In adult rats that had a simulated stroke, the human stem cells migrated into the damaged region, matured into the appropriate type of neuron and support cells and appeared to integrate into the surrounding tissue. The research group is currently testing whether those transplanted cells repaired stroke-induced damage to the rats' ability to move or learn.

The only situation that rendered the neural stem cells immobile was the healthy adult rat brain. As with Steinberg's previous work, the group found that in the absence of any signals to beckon the stem cells, they stayed close to where the researchers implanted them.

All of this adds up to encouraging news for researchers hoping to use stem cells to treat human disease. For now, nobody knows the best way of inserting the cells, the conditions that are best for cell survival, or the optimal timing after an injury for when transplanting the cells is most effective. With the ability to watch the cells in real time, researchers can compare different techniques to learn what works best.

The cells used in this study were similar to those that are part of a clinical trial for a childhood disorder called Batten's disease. Steinberg said he and others are interested in testing these or other stem cells as a way of treating a wide range of diseases.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: Iron Stem TRACK neural particles transplanted trial

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>