Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems Characterization of Cell Surface Receptors

04.06.2007
Cells communicate with their environment through molecules on their surface known as receptors. Receptors bind ligands - specific companion molecules that either carry information about the outside environment or are critical cell nutrients. A variety of receptors are internalized into the cell through a process known as endocytosis. Receptors display a wide range of state-dependent endocytosis rates, but the functional significance of these patterns is not well understood.

In a paper publishing today (June 1) in the Open Access journal PLoS Computational Biology, Drs. Shankaran, Resat and Wiley from the Pacific Northwest National Laboratory employ a generalized mathematical model to comparatively explore the design principles of signal transduction and transport receptors.

The authors use a new module-based systems theory approach along with quantitative metrics for network function and robustness to show that endocytosis and other receptor/ligand properties can be described by just a few control parameters. Using mathematical analysis, the authors show that the efficiency and robustness of receptor systems are encoded by two fundamental parameters: the avidity which quantifies the ability of a receptor system to capture ligand, and the consumption which quantifies the ability to internalize bound ligand.

By examining a number of receptor systems, the authors demonstrate that the response of receptor systems can be characterized as being: i) avidity-controlled, which depends primarily on ligand capture efficiency, ii) consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii) dual-sensitive, in which both the avidity and consumption parameters are important. The location of various receptor systems in control parameter space dictates their specific function and regulation.

... more about:
»Ligand »Receptors »endocytosis »receptor

Most significantly, the authors argue that the evolution of a given receptor system can be understood in terms of its optimal location in avidity-consumption parameter space. For example, induced endocytosis can be shown to be an optimal solution for achieving high fidelity information transmission for signaling receptors. Overall, this study develops and applies a new strategy for quantifying the phenotype of complex systems that should be generally applicable to a wide range of problems in systems biology research.

The research was funded by the National Institutes of Health and the Biomolecular Systems Initiative at PNNL.

Andrew Hyde | alfa
Further information:
http://www.plos.org
http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030101

Further reports about: Ligand Receptors endocytosis receptor

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>