Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Description of mutations and functoin of a gene implicated in the development of Fanconi anemia and predisposition to cancer

04.06.2007
An international research consortium, which included the participation of the Mutagènesi Group from the UAB, has made outstanding progress in the study of Fanconi anaemia.

They have described the function and range of possible mutations of the gene implicated in this disease that affects functions like nerve and skeletal development, blood cell formation and predisposition to cancer. This discovery will aid in detecting the defective gene that causes Fanconi anaemia, which is fundamental in prenatal diagnosis and even pre-implantation diagnosis where the objective is to select an embryo that is compatible with a transplant donor. Furthermore, identification of the responsible gene is indispensable for the future application of gene therapy.

The researchers have studied the function and mutational spectrum of the FANCD2 gene, one of thirteen genes implicated in Fanconi anaemia. The result is a step forward in the knowledge of the genetics and molecular biology of this disease which, although rare, is of important biomedical interest because the proteins that are implicated with it are also associated with different vital functions and cancer suppression. The work covers the molecular studies of all the D2 Fanconi patients (those affected by the Fanconi anaemia that present alternations of this gene) known around the world.

A more severe and rapid variant

... more about:
»FANCD2 »Fanconi »anaemia »implicated »mutations

This work also compared FANCD2 patients with 754 patients with FANCA, FANCC and FANCG, which are the more prevalent variants worldwide. The results indicate that the Fanconi D2 patients’ symptoms (clinical phenotype) are more severe than the others.

This is due to the vital function of the FANCD2 gene in the maintenance of the stability of the genome and in the development and function of the multiple organs and tissues, such as the formation of white blood cells, platelets and other elements of the blood (Fanconi D2 patients have a dysfunction in the production of blood in the medulla starting at 2.4 years old on average), neuronal development (89% of the Fanconi D2 patients suffer from microcephalia) or the formation of skeletal tissue (72% of the Fanconi D2 patients present skeletal malformations). In addition, the progression of the disease is more rapid in Fanconi D2 patients resulting in the need for early transfusions for survival and transplants when there is a compatible donor.

Differences with animal models

On the other hand, the research shows that the mutations do not totally eliminate the FANCD2 gene function, but cause a low level of expression of the FANCD2 protein. These results indicate that in humans, as opposed to what was observed in mice, the total absence of the FANCD2 protein is impossible (without this protein the embryo will not develop), and underline the findings that animal models do not always reflect the clinical phenotype of the disease.

A consortium of 13 European and North American laboratories and hospitals performed the research, which included the group directed by Dr. Jordi Surrallés of the Departament de Genètica i de Microbiologia (Department of Genetics and Microbiology) of the UAB and assigned to the Centro de Investigaciones Biomédicas en Red de Enfermedades Raras del Instituto de Salud Carlos III (CIBER-ER) (Biomedical Research Centre for Rare Diseases of the Carlos III Health Institute network). The American Journal of Human Genetics published the results in their May edition.

This study, together with others published by Dr. Surrallés’ team complements a model study described in the May edition of the review Cell Cycle that relates the genetic base of the disease with its clinical heterogeneous progression. This model is based on the fact that the patients with a total absence of FANCA protein, whose main function is to activate FANCD2 protein, have a milder clinical phenotype than FANCD2 patients. In turn, these are milder than patients with FANCD1/BRCA2, a gene that acts directly on a DNA level and promotes repairs in cases of genetic mutations.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

Further reports about: FANCD2 Fanconi anaemia implicated mutations

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>