Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new drugs to fight colon and breast cancer more effectively

04.06.2007
The doctoral thesis 'Potencial terapéutico de nuevos fármacos antitumorales. Estudio sobre líneas celulares epiteliales' (Therapeutic Potential of New Antitumor Drugs.

A Study on Epithelial Cell Lines) has allowed for the development of six new drugs to fight colon and breast cancer more effectively than other currently used drugs. The study was conducted at the Department of Human Anatomy and Embryology at the University of Granada (Universidad de Granada [http://www.ugr.es]) by Octavio Caba Pérez, member of the research group "Avances en Biomedicina" (Progress in Biomedicine), under the direction of professors Antonia Aránega, Juan Antonio Marchal and Fernando Rodríguez.

The importance of this study, in which researchers from the Department of Pharmaceutical and Organic Chemistry have also collaborated, is that it enabled the identification of a total of six antitumor compounds similar to 5-fluorouracil (5-FU), one of the most widely-used drugs nowadays to fight colon and breast cancer. These compounds are more effective against malignant cells (those which are cancerous) and less toxic against benign cells (those which are unnecessarily destroyed or harmed with treatments such as chemotherapy).

As Caba Pérez points out, the current method used to fight tumors “produces several 'collateral damages'. A drug can be very effective against breast cancer, but it can also affect the rest of the benign epithelial tissue. As everybody knows, current treatments for cancer destroy a large number of unaffected cells in addition to affected cells,” says Caba Pérez.

... more about:
»Caba »Perez »colon

In this study researchers analyzed more than 150 drugs aimed at reducing the toxicity of the 5-FU against the benign cells, thus avoiding the reproduction of new carcinomas or other side effects. “We discarded compounds until we finally found six which have shown to be better than currently used drugs,” says Caba Pérez.

Research on cell lines

So far, the study has been conducted on cell lines, and not on patients, using a new technique called “Microarrays” or “DNA Chips”, which enables the identification of the effects produced by drugs on each gene — the lowest and most specific level that Medicine can deal with.

“Our research,” says Caba Pérez, “has been conducted with absolute precision with the aim of obtaining the lowest possible concentration of drug producing the most significant effect on cancerous cells”. Therefore, this study has shown the importance of the presence of some toxic compounds like chlorine, flourine or uracil in drugs. This presence is one of the variables used to develop new antitumor drugs.

Part of the results of this study (which has been possible thanks to cooperation between the UGR [http://www.ugr.es] and the company VILPOMAS) have been published in the January 1 issue of the international journal "Tetrahedron". The remainder of the results will be published in various international journals on Biomedicine.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

Further reports about: Caba Perez colon

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>