Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the neural basis of anxiety

04.06.2007
Researchers identify a neural circuit that makes mice perceive ambiguous situations as threatening

People who suffer from anxiety tend to interpret ambiguous situations, situations that could potentially be dangerous but not necessarily so, as threatening. Researchers from the Mouse Biology Unit of the European Molecular Biology Laboratory (EMBL) in Italy have now uncovered the neural basis for such anxiety behaviour in mice. In the current issue of Nature Neuroscience they report that a receptor for the messenger serotonin and a neural circuit involving a brain region called the hippocampus play crucial roles in mediating fear responses in ambiguous situations.

A mouse that has learned that a certain cue, for example a tone, is always followed by an electrical shock comes to associate the two and freezes with fear whenever it hears the tone even if the shock is not delivered. But in real life the situation is not always so clear; a stimulus will only sometimes be followed by a threat while other times nothing might happen. Normal mice show less fear towards such ambiguous cues than to clearly threatening stimuli.

A team of researchers led by Cornelius Gross at the EMBL Mouse Biology Unit now discovered that this response to ambiguous stimuli requires a specific receptor molecule for serotonin, a signal many brain cells use to communicate. Mice that lack the serotonin receptor 1A have problems processing ambiguous stimuli and react to them with full-fledged fear responses. The cause is wrongly connected cells in their brains. Serotonin signalling is very important for brain development and if the receptor 1A is missing, defects arise in the wiring of the brain that affect the behaviour of mice later on in life.

... more about:
»Hippocampus »ambiguous »anxiety »neural »receptor

“In humans serotonin signalling has been implicated in disorders including depression and anxiety and like our mice patients suffering from these conditions also overreact to ambiguous situations,” Gross says. “The next step was to identify the brain regions that are responsible for such complex fear behaviour and the processing of ambiguous cues.”

Using a new technique to switch off neural activity in selective brain cells in living mice, Gross and his colleagues discovered that a specific part of the hippocampus is required for correct processing of ambiguous stimuli.

“Shutting down a specific circuit in the hippocampus abolished fear reactions only to ambiguous cues,” says Theodoros Tsetsenis who carried out the research in Gross’ lab. “The pathway must be involved in processing and assessing the value of stimuli. It seems to bias mice to interpret situations as threatening.”

The hippocampus is mainly known as a region important for learning and memory, but the results reveal a more general role in evaluating information and assessing contingencies.

Neural circuits that govern fundamental behaviours like fear are often often conserved between species and patient studies suggest a role for the hippocampus in anxiety also in humans. The new insights gained into serotonin signalling via the receptor 1A and the role of the hippocampus in fear behaviour in mice promise to shed light on the neural basis of anxiety disorders and open up new avenues for therapies.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/downloads/

Further reports about: Hippocampus ambiguous anxiety neural receptor

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>