Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the neural basis of anxiety

04.06.2007
Researchers identify a neural circuit that makes mice perceive ambiguous situations as threatening

People who suffer from anxiety tend to interpret ambiguous situations, situations that could potentially be dangerous but not necessarily so, as threatening. Researchers from the Mouse Biology Unit of the European Molecular Biology Laboratory (EMBL) in Italy have now uncovered the neural basis for such anxiety behaviour in mice. In the current issue of Nature Neuroscience they report that a receptor for the messenger serotonin and a neural circuit involving a brain region called the hippocampus play crucial roles in mediating fear responses in ambiguous situations.

A mouse that has learned that a certain cue, for example a tone, is always followed by an electrical shock comes to associate the two and freezes with fear whenever it hears the tone even if the shock is not delivered. But in real life the situation is not always so clear; a stimulus will only sometimes be followed by a threat while other times nothing might happen. Normal mice show less fear towards such ambiguous cues than to clearly threatening stimuli.

A team of researchers led by Cornelius Gross at the EMBL Mouse Biology Unit now discovered that this response to ambiguous stimuli requires a specific receptor molecule for serotonin, a signal many brain cells use to communicate. Mice that lack the serotonin receptor 1A have problems processing ambiguous stimuli and react to them with full-fledged fear responses. The cause is wrongly connected cells in their brains. Serotonin signalling is very important for brain development and if the receptor 1A is missing, defects arise in the wiring of the brain that affect the behaviour of mice later on in life.

... more about:
»Hippocampus »ambiguous »anxiety »neural »receptor

“In humans serotonin signalling has been implicated in disorders including depression and anxiety and like our mice patients suffering from these conditions also overreact to ambiguous situations,” Gross says. “The next step was to identify the brain regions that are responsible for such complex fear behaviour and the processing of ambiguous cues.”

Using a new technique to switch off neural activity in selective brain cells in living mice, Gross and his colleagues discovered that a specific part of the hippocampus is required for correct processing of ambiguous stimuli.

“Shutting down a specific circuit in the hippocampus abolished fear reactions only to ambiguous cues,” says Theodoros Tsetsenis who carried out the research in Gross’ lab. “The pathway must be involved in processing and assessing the value of stimuli. It seems to bias mice to interpret situations as threatening.”

The hippocampus is mainly known as a region important for learning and memory, but the results reveal a more general role in evaluating information and assessing contingencies.

Neural circuits that govern fundamental behaviours like fear are often often conserved between species and patient studies suggest a role for the hippocampus in anxiety also in humans. The new insights gained into serotonin signalling via the receptor 1A and the role of the hippocampus in fear behaviour in mice promise to shed light on the neural basis of anxiety disorders and open up new avenues for therapies.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/downloads/

Further reports about: Hippocampus ambiguous anxiety neural receptor

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>