Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy offers new hope for treatment of peripheral neuropathy

01.06.2007
Researchers from the University of Pittsburgh School of Medicine report that they have successfully used gene therapy to block the pain response in an animal model of neuropathic pain, a type of chronic pain in people for which there are few effective treatments. These findings are being presented at the 10th annual meeting of the American Society of Gene Therapy, being held May 30 to June 3 at the Washington State Convention & Trade Center, Seattle.

Neuropathic pain is the result of damage to nerve fibers caused by injuries or diseases, such as diabetes and cancer. These damaged nerve fibers continue to send signals to pain centers in the brain even after the surrounding tissue has healed. Unfortunately, neuropathic pain often responds poorly to standard pain treatments and occasionally may get worse instead of better over time. For some people, it leads to serious, long-term disability and dependence on pain medications that have a variety of unwanted side effects, including addiction.

The Pitt research team, led by Joseph Glorioso, III, Ph.D., chair of the department of biochemistry and molecular genetics, University of Pittsburgh School of Medicine, used a genetically engineered herpes simplex virus (HSV) to deliver the gene for part of the human glycine receptor (GlyR), a receptor found primarily on the surface of nerve cells in the spinal cord and the lower brain but not in the nerves in the limbs, to the paws of rats. A group of control rats received only the HSV vector without the inserted gene. After the delivery of the therapeutic gene or empty vector (for the control group), the researchers injected the same paws of each rat with formalin, an irritant known to simulate the symptoms of a peripheral neuropathic pain at the site of injection. Following formalin injection, the rats were then given an injection of glycine to activate the GlyR receptor.

Both control and GlyR-HSV-infected rats showed a typical pain response to formalin. However, the application of glycine eliminated the pain response in GlyR-HSV infected animals, while it had no effect on animals infected with vector only. This alleviation of the pain response in GlyR-HSV-treated mice was reversed by the subsequent addition of low concentrations of strychnine, a strong GlyR-specific inhibitor, or antagonist.

... more about:
»GlyR »Nerve »glycine »neuropathic »peripheral

According to Dr. Glorioso, these findings suggest that HSV-directed expression of GlyR in peripheral neurons and subsequent selective activation by glycine has the potential to be used therapeutically not only for neuropathic pain management but a variety of pain syndromes.

"The inability to effectively manage neuropathic pain associated with injuries and illnesses is a growing national and international problem. Gene therapy offers a more targeted, less toxic approach for effectively managing this condition. It also is our hope that targeted transgene delivery of GlyR may have even broader implications for managing a number of chronic pain syndromes, including pain resulting from shingles, arthritis and cancer," explained Dr. Glorioso.

Jim Swyers | EurekAlert!
Further information:
http://www.upmc.edu
http://www.abstracts2view.com/asgt/

Further reports about: GlyR Nerve glycine neuropathic peripheral

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>