Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy offers new hope for treatment of peripheral neuropathy

01.06.2007
Researchers from the University of Pittsburgh School of Medicine report that they have successfully used gene therapy to block the pain response in an animal model of neuropathic pain, a type of chronic pain in people for which there are few effective treatments. These findings are being presented at the 10th annual meeting of the American Society of Gene Therapy, being held May 30 to June 3 at the Washington State Convention & Trade Center, Seattle.

Neuropathic pain is the result of damage to nerve fibers caused by injuries or diseases, such as diabetes and cancer. These damaged nerve fibers continue to send signals to pain centers in the brain even after the surrounding tissue has healed. Unfortunately, neuropathic pain often responds poorly to standard pain treatments and occasionally may get worse instead of better over time. For some people, it leads to serious, long-term disability and dependence on pain medications that have a variety of unwanted side effects, including addiction.

The Pitt research team, led by Joseph Glorioso, III, Ph.D., chair of the department of biochemistry and molecular genetics, University of Pittsburgh School of Medicine, used a genetically engineered herpes simplex virus (HSV) to deliver the gene for part of the human glycine receptor (GlyR), a receptor found primarily on the surface of nerve cells in the spinal cord and the lower brain but not in the nerves in the limbs, to the paws of rats. A group of control rats received only the HSV vector without the inserted gene. After the delivery of the therapeutic gene or empty vector (for the control group), the researchers injected the same paws of each rat with formalin, an irritant known to simulate the symptoms of a peripheral neuropathic pain at the site of injection. Following formalin injection, the rats were then given an injection of glycine to activate the GlyR receptor.

Both control and GlyR-HSV-infected rats showed a typical pain response to formalin. However, the application of glycine eliminated the pain response in GlyR-HSV infected animals, while it had no effect on animals infected with vector only. This alleviation of the pain response in GlyR-HSV-treated mice was reversed by the subsequent addition of low concentrations of strychnine, a strong GlyR-specific inhibitor, or antagonist.

... more about:
»GlyR »Nerve »glycine »neuropathic »peripheral

According to Dr. Glorioso, these findings suggest that HSV-directed expression of GlyR in peripheral neurons and subsequent selective activation by glycine has the potential to be used therapeutically not only for neuropathic pain management but a variety of pain syndromes.

"The inability to effectively manage neuropathic pain associated with injuries and illnesses is a growing national and international problem. Gene therapy offers a more targeted, less toxic approach for effectively managing this condition. It also is our hope that targeted transgene delivery of GlyR may have even broader implications for managing a number of chronic pain syndromes, including pain resulting from shingles, arthritis and cancer," explained Dr. Glorioso.

Jim Swyers | EurekAlert!
Further information:
http://www.upmc.edu
http://www.abstracts2view.com/asgt/

Further reports about: GlyR Nerve glycine neuropathic peripheral

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>