Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motors may speed nutrient processing

01.06.2007
Matthew Tyska, Ph.D., recalls being intrigued, from the first day of his postdoctoral fellowship in 1999, with a nearly 30-year-old photograph. It was an electron micrograph that showed the internal structures of an intestinal cell microvillus, a finger-like protrusion on the cell surface. Microvilli are common features on the epithelial cells that line the body’s cavities.

At the time, Tyska knew that the core bundle traveling up the center of the microvillus was an array of the structural protein actin, and that the ladder-like "rungs" connecting the actin bundle to the cell membrane were composed of the motor protein myosin-1a. This myosin, though related to the myosin involved in muscle cell contraction, was thought to serve a purely structural role. "The textbook thinking for decades was that microvilli serve as a passive scaffold, a way to amplify the membrane surface area," said Tyska, assistant professor of Cell and Developmental Biology at Vanderbilt University.

In the intestines, an expanded cell surface increases the space for nutrient-processing enzymes and transporters, offering greater capacity for nutrient handling. But it didn't make sense to Tyska that a motor protein – a protein with the potential to generate force and move cargo around in cells – would play a passive structural role. "When I looked at that image, the near crystalline arrangement reminded me of actin and myosin in a muscle fiber," Tyska said. "I kept returning to the same question: why would the microvillus have this beautiful structure packed with motor proteins. The concentration of myosin motors in a single microvillus is very high; there’s serious force-generating potential there."

Tyska and Russell McConnell, a student in his laboratory, tested the idea that these motor proteins are more than molecular glue binding the cell membrane to the actin bundle" The investigators purified the intestinal “brush border" – the layer of densely packed microvilli – from the intestines of rats or mice, and added ATP, the chemical fuel for myosin-1a. Through the microscope, they watched the cell membrane move toward the tips of the microvilli and pop off the ends in the form of vesicles, tiny bubble-like packets.

Their findings, reported in the May 21 Journal of Cell Biology with one of their images featured on the issue cover, have implications for nutrient processing and other aspects of gastrointestinal physiology. Tyska is excited about the group’s unexpected discovery. "What we’re showing is that the microvillus is more than just a scaffold to increase the amount of cell membrane," Tyska said. "It’s a little machine that can shed membrane from the tips." The team confirmed that myosin-1a is the motor that moves membrane up the microvillus. Brush borders isolated from knockout mice lacking the myosin-1a gene shed membrane at only five percent of the level of brush borders from wild-type animals.

The investigators are working now to understand why intestinal cells might launch vesicles from their microvilli. They know from ongoing vesicle sorting and mass spectrometry studies that the vesicles contain nutrient-processing enzymes and transporters, like the microvillar membrane. "One idea is that these vesicles operate remotely to speed nutrient processing, before the nutrients even get to the brush border to be absorbed by the (intestinal epithelial cell)," Tyska said.

The team is also exploring other possibilities for the role of membrane shedding: that it offers protection against microbes and pathogens by expelling them from the surface before they can enter the cell; that it provides a mechanism for altering the composition of the microvillar surface to handle changes in "what comes down the pipe;" and that it serves a role in cell-cell communication by launching vesicles that contain signaling proteins. Tyska and his team also plan to explore whether myosin-1a is serving a similar membrane-moving role in its other known location: the hair cells of the inner ear, and if other microvilli also use myosin motors to jettison vesicles from their tips.

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

Further reports about: Tyska intestinal microvilli microvillus myosin-1a nutrient

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>