Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the Villain Becomes your Friend: The Strange Tale of Muscle Lactate

01.06.2007
In a paper published this week in The Journal of Physiology, Frank de Paoli and colleagues, working at the University of Aarhus in Denmark, add to the growing literature leading to a more complete understanding of the physiological role of lactic acid production in muscle.

In the late 19th century, fermentation chemists realized that juice left to ferment without adequate oxygen resulted in acid products. Then, in the early 20th century, when physiologists stimulated isolated frog muscles to contract until exhaustion, they found that the tissues had accumulated high amounts of lactic acid. Since then, the idea that lactic acid accumulation causes muscle fatigue has persisted. But did early scientists fail to address the various issues adequately and interpret the results appropriately? Did they fail to ask the essential question “Why does nature make lactic acid?”, and did they in effect put one and one together and make them a minus?

De Paoli and colleagues looked at the effects of lactic acid and adrenaline on the processes that signal contractions in skeletal muscles. Using rat muscles, the study examined the combined effect of potassium ions, lactic acid and adrenaline on the electrical signalling system that serves to forward the activating signals from the brain to the muscle fibres where contraction takes place. They showed that in combination, lactic acid and adrenalin serve to help working muscles ward off the effects of potassium ions which leak from the inside to the outside of working muscle cells and negatively effect the signaling process by which muscles contract. In this, the latest of a series of reports from the Aarhus group, in combination with reports from other scientists in Scandinavia, the UK, US and Canada, long-standing ideas about the role of lactic acid in muscle are being overturned.

So, why do muscles contract? Usually, muscles contract because the central and peripheral nervous system signals them to do so. Why do the muscles make lactic acid? Lactic acid is the result of the glycolytic energy production system. It is an energy source to be used in muscle cells of origin, or adjacent fibres (cells), or fibres in the heart and cells in the brain. Lactic acid is also the material that the liver prefers to make glucose (sugar) for the blood when exercise is prolonged. Lactic acid production in muscle is stimulated in part by circulating adrenalin. Now, from de Paoli and colleagues we learn that adrenalin and lactic acid also help protect against the electrolyte imbalance across muscle membranes brought on by the loss of potassium.

... more about:
»Adrenalin »Lactic acid »acid »lactic »potassium

Why does potassium have such a negative effect? In the study, when potassium ions outside the muscle fibres were increased to levels seen during intense exercise, the ability of the signalling system to forward electrical signals was profoundly reduced and the muscle became paralysed. If, however, lactic acid and adrenaline were added in combination, the function of the signalling system was largely recovered and the contractile response of the muscles restored. It was further shown that the positive effect of lactic acid was specifically related to an acidification of the interior of the muscle cells, which is one of the hallmarks of intense exercise.

The muscle lactic acid story, however, is still incomplete. It may even be found that lactate production is adaptive because its presence signals the activation of genes responsible for controlling muscle function. So, it seems that there is wisdom in the way that the body functions, a retrospective realisation that seems obvious, and which for lactic acid is supported by a century of strides even after a few false steps.

Melanie Thomson | alfa
Further information:
http://.jp.physoc.org
http://www.blackwellpublishing.com

Further reports about: Adrenalin Lactic acid acid lactic potassium

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>