Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows sharks use their noses and bodies to locate smells

31.05.2007
Sharks are known to have a keen sense of smell, which in many species is critical for finding food. However, according to new research from Boston University marine biologists, sharks can not use just their noses to locate prey; they also need their skin – specifically a location called the lateral line.

The lateral line is an organ used by all fish to detect, with exquisite sensitivity, movement and vibration in the surrounding water. According to the research team, this is similar to how humans can sense air flow with the small hairs on the face. Until now, it had not been demonstrated that the lateral line also aids in the tracking of odor plumes.

"Odor plumes are complex, dynamic, three-dimensional structures used by many animal species to locate food, mates, and home sites. However, odor itself has no directional properties, so animals must use a variety of senses to get the directional information for a smell," said Jelle Atema, professor of biology at Boston University and study co-author.

The new study examined the contribution of the olfactory system, the lateral line, and vision in odor source detection and localization in the smooth dogfish shark. The results, which appear in the June 1 issue of the Journal of Experimental Biology, show that this shark is severely handicapped in its ability to locate the source of an odor when deprived of information from its lateral line, particularly in the dark.

... more about:
»Atema »Condition »Plume »lateral »odor »turbulent

According to Atema, since most odor plumes disperse in patches, fish locate odor sources through a process referred to as "eddy chemotaxis," or the tracking of odor and turbulence simultaneously.

"We might see odor and turbulent eddies in the oily wake behind a boat. A moving animal, similarly, leaves behind a trail of turbulent eddies flavored by its body odor," explained Atema. In an eight meter flume in the lab, Atema and Jayne Gardiner, a recently graduated Boston University Marine Program (BUMP) Masters student and study co-author, created two parallel, turbulent odor plumes – one using squid scent and the other a plain seawater control. Minimally turbulent ‘oozing’ sources of squid odor and seawater control were physically separated from sources of major turbulence by placing a brick downstream from each oozing source to create two turbulent wakes with one or the other flavored with food odor. This produced four separate smell targets for the sharks to locate.

"In addition, we also tested the sharks under two light conditions – fluorescent and infrared – and in two sensory conditions – with their lateral lines intact or lesioned by streptomycin," explained Gardiner.

According to the researchers, streptomycin, an antibiotic, interferes with the normal function of motion sensitive "hair cells," the receptor cells of the lateral line. At high doses it has been known to cause hearing and equilibrium problems in humans, senses that are also based on hair cells.

Sharks with their lateral lines intact demonstrated a preference for the odor plume over the seawater plume and, more specifically, for the odor source with the higher turbulence (the brick on the odor side) over the source of the odor alone (the odor-oozing nozzle). Plume and target preference and search time were not significantly affected by light condition.

In the light, lesioning the lateral line increased search time, but did not affect success rate or plume preference. However, lesioned animals no longer discriminated between sources of turbulent and oozing odor. In the dark, search time of lesioned animals further increased, and the few animals that located any of the targets did not discriminate between odor and seawater plumes, let alone targets.

"These results demonstrate for the first time that sharks require both olfactory and lateral line input for efficient and precise tracking of odor-flavored wakes and that visual input can improve food-finding when lateral line information is not available," said Atema. "Since dogfish feed primarily in the dark hunting for crabs, lobsters, shrimp and small fish, their reliance on information from their lateral line is essential. The results are interesting for our understanding of animal navigation under water and for the development of guidance of autonomous underwater vehicles (AUVs)"

Kira Edler | EurekAlert!
Further information:
http://www.bu.edu

Further reports about: Atema Condition Plume lateral odor turbulent

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>