Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows sharks use their noses and bodies to locate smells

31.05.2007
Sharks are known to have a keen sense of smell, which in many species is critical for finding food. However, according to new research from Boston University marine biologists, sharks can not use just their noses to locate prey; they also need their skin – specifically a location called the lateral line.

The lateral line is an organ used by all fish to detect, with exquisite sensitivity, movement and vibration in the surrounding water. According to the research team, this is similar to how humans can sense air flow with the small hairs on the face. Until now, it had not been demonstrated that the lateral line also aids in the tracking of odor plumes.

"Odor plumes are complex, dynamic, three-dimensional structures used by many animal species to locate food, mates, and home sites. However, odor itself has no directional properties, so animals must use a variety of senses to get the directional information for a smell," said Jelle Atema, professor of biology at Boston University and study co-author.

The new study examined the contribution of the olfactory system, the lateral line, and vision in odor source detection and localization in the smooth dogfish shark. The results, which appear in the June 1 issue of the Journal of Experimental Biology, show that this shark is severely handicapped in its ability to locate the source of an odor when deprived of information from its lateral line, particularly in the dark.

... more about:
»Atema »Condition »Plume »lateral »odor »turbulent

According to Atema, since most odor plumes disperse in patches, fish locate odor sources through a process referred to as "eddy chemotaxis," or the tracking of odor and turbulence simultaneously.

"We might see odor and turbulent eddies in the oily wake behind a boat. A moving animal, similarly, leaves behind a trail of turbulent eddies flavored by its body odor," explained Atema. In an eight meter flume in the lab, Atema and Jayne Gardiner, a recently graduated Boston University Marine Program (BUMP) Masters student and study co-author, created two parallel, turbulent odor plumes – one using squid scent and the other a plain seawater control. Minimally turbulent ‘oozing’ sources of squid odor and seawater control were physically separated from sources of major turbulence by placing a brick downstream from each oozing source to create two turbulent wakes with one or the other flavored with food odor. This produced four separate smell targets for the sharks to locate.

"In addition, we also tested the sharks under two light conditions – fluorescent and infrared – and in two sensory conditions – with their lateral lines intact or lesioned by streptomycin," explained Gardiner.

According to the researchers, streptomycin, an antibiotic, interferes with the normal function of motion sensitive "hair cells," the receptor cells of the lateral line. At high doses it has been known to cause hearing and equilibrium problems in humans, senses that are also based on hair cells.

Sharks with their lateral lines intact demonstrated a preference for the odor plume over the seawater plume and, more specifically, for the odor source with the higher turbulence (the brick on the odor side) over the source of the odor alone (the odor-oozing nozzle). Plume and target preference and search time were not significantly affected by light condition.

In the light, lesioning the lateral line increased search time, but did not affect success rate or plume preference. However, lesioned animals no longer discriminated between sources of turbulent and oozing odor. In the dark, search time of lesioned animals further increased, and the few animals that located any of the targets did not discriminate between odor and seawater plumes, let alone targets.

"These results demonstrate for the first time that sharks require both olfactory and lateral line input for efficient and precise tracking of odor-flavored wakes and that visual input can improve food-finding when lateral line information is not available," said Atema. "Since dogfish feed primarily in the dark hunting for crabs, lobsters, shrimp and small fish, their reliance on information from their lateral line is essential. The results are interesting for our understanding of animal navigation under water and for the development of guidance of autonomous underwater vehicles (AUVs)"

Kira Edler | EurekAlert!
Further information:
http://www.bu.edu

Further reports about: Atema Condition Plume lateral odor turbulent

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>