Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How E. coli evolves to adapt to changing acidity

30.05.2007
One in a series of studies on laboratory studies of selection and evolution

Forthcoming in Physiological and Biochemical Zoology, a fascinating new selection of papers collects leading experimental research in evolution and artificial selection, providing insight into how organisms adapt to changing environmental conditions and fluctuations.

Dr. James Hicks, Editor in Chief of PBZ, explains the momentum behind this collection of papers: "This exciting approach – experimental evolution – allows scientists to investigate the fundamental mechanisms of evolution. Prior to the advent of contemporary laboratory techniques, inferences about evolution were based on observation. Now, we can study evolutionary change as it is happening, by selecting organisms that change rapidly, such as the fruit fly or E. coli. This advantage allows scientists to investigate how changes occur and how they affect an organism's individual physiology and overall community."

In the July/August 2007 issue, the first of three issues that will contain articles from the collection, Bradley S. Hughes, Alistair J. Cullum, and Albert F. Bennett (University of California, Irvine) explore the effect on E. coli of fluctuating acidity, an especially important environmental factor for the bacteria.

... more about:
»Coli »E. coli »adapt »experimental

E. coli may spend hundreds or thousands of generations in the relatively neutral-acidity colon, with brief exposure to the extreme acidity of the stomach and modest alkalinity in the small intestine during colonization of a new host. With modern sewage handling (or mishandling), the bacteria may also experience exposure to the ocean, with a pH near 8.0, before infecting a new host.

To assess how E. coli might adapt to different environmental conditions, the researchers observed four groups of bacteria. One group was exposed to constant acidity (pH of 5.3) and another to constant alkalinity (pH of 7.8). A third group was exposed to randomly fluctuating pH levels, and the fourth was exposed to pH levels that cycled daily between acidic and basic conditions.

After at least 1,000 generations, the researchers exposed the groups to either an acidic or basic environment. The groups exposed to acid or base for the entire period had developed into specialists – that is, they displayed significant fitness gains when transitioning into their preferred environment.

In contrast, the groups that evolved in variable pH environments exhibited generalist fitness patterns, with neither group having any significant fitness loss in any of the environments. Interestingly, the researchers also found that there was no significant cost to being a generalist at any tested pH level: "Overall, these comparisons suggest that the jack-of-all-trades may be a master of at least some as well," the researchers write.

"What is interesting here is that the complex patterns of adaptation in the various pH regimes were so different among the groups and revealed the first empirical characterization of the intricacies of evolution in response to variable pH," explain the authors. "Plans for future studies include the extension of this experimental evolution system applied to . . . ways in which E. coli may be evolving fitness to survive within the coastal ecosystem or the human host."

Papers from the focused collection, "Experimental Evolution and Artificial Selection" will also appear in the September/October and November/December 2007 issues.

Focused Issue: Experimental Evolution and Artificial Selection (July/August 2007)

"Do Species Converge during Adaptation" A Case Study in Drosophila"
Carla Rego, Michael R. Rose, and Margarida Matos
"Laboratory Evolution of the Migratory Polymorphism in the Sand Cricket: Combining Physiology with Quantitative Genetics"

Derek A. Roff and Daphne J. Fairbairn

"Evolutionary Adaptation to Freeze-Thaw-Growth Cycles in Escherichia coli"
Sean C. Sleight and Richard E. Lenski
"Using Experimental Evolution to Study the Physiological Mechanisms of Desiccation Resistance in Drosophila melanogaster"

Margaret A. Archer, Timothy J. Bradley, Laurence D. Mueller, and Michael R. Rose

"Experimental Evolution of Olfactory Memory in Drosophila melanogaster"
Frederic Mery, Juliette Pont, Thomas Preat, and Tadeusz J. Kawecki
"An Experimental Evolutionary Study on Adaptation to Temporally Fluctuating pH in Escherichia coli"

Bradley S. Hughes, Alistair J. Cullum, and Albert F. Bennett

Suzanne Wu | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: Coli E. coli adapt experimental

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>