Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeling a heartbeat via a computer

30.05.2007
The dynamics of a beating heart, the turbulence surrounding the fuselage of an airplane, or the field of forces inside a molecule. All of these things can be felt, not only seen, with a new visualization technology developed at Linköping University in Sweden.

Today's powerful computers have opened previously unimagined possibilities regarding the presentation and analysis of scientific data. Volume data, in particular-such as three-dimensional computer tomographies of the human body-can contain incredible amounts of information. When such data are to be analyzed, it can be an advantage to be able to use to more senses than sight alone.

Karljohan Lundin Palmerius at the Division for Visual Information Technology and Applications.

has developed methods to explore volume data using the sense of touch a branch of science that is often called haptics. He describes his pioneering work in a dissertation titled Direct Volume Haptics for Visualization.

... more about:
»Karljohan »Linköping »Lundin »Palmerius

Thanks to new computational algorithms, three-dimensional forms can be freely studied and perceived in a manner natural to the user, who works at a computer screen with a sort of touch tool. The most common type is constructed as an industrial robot in which miniature electric motors provide feedback to the hand.

"Different equations are needed for different applications. I am the first researcher to present the dynamic events of a beating heart in a real patient," says Karljohan Lundin Palmerius.

His Methods can be used to provide a better basis for diagnosis, but also for simulations for doctors to practice on a patient who will then be operated on in reality.

The medical data he works with come from the Center for Medical Image Science and Visualization (CMIV) at Linköping University. From SAAB he has been given access to data from the development of the unmanned airplane Shark and has created a virtual wind tunnel where the constructor can feel how the airstreams move around the fuselage.

Contact: Karljohan Lundin Palmerius, phone: +46-11 63326;
e-mail: Karljohan.Lundin.Palmerius@itn.liu.se
Åke Hjelm, pressofficer, Linköping univewrsity, ake.hjelm@liu.se;
+46-13 281395

Åke Hjelm | idw
Further information:
http://www.diva-portal.org/liu/abstract.xsql?dbid=8771

Further reports about: Karljohan Linköping Lundin Palmerius

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>