Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human antibodies protect mice from avian flu

30.05.2007
An international team of scientists, including researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, report using antibodies derived from immune cells from recent human survivors of H5N1 avian influenza to successfully treat H5N1-infected mice as well as protect them from an otherwise lethal dose of the virus.

"The possibility of an influenza pandemic, whether sparked by H5N1 or another influenza virus to which humans have no natural immunity, is of serious concern to the global health community," says NIAID Director Anthony S. Fauci, M.D. "If the success of this initial study is confirmed through further laboratory and clinical trials, human monoclonal antibodies could prove to be valuable therapeutic and prophylactic public health interventions for pandemic influenza."

The research, to be published May 29 in PLoS Medicine, represents a three-way collaboration among Kanta Subbarao, M.D., and her coworkers at NIAID; Antonio Lanzavecchia, M.D., and colleagues from the Institute for Research in Biomedicine, Bellinzona, Switzerland; and Cameron Simmons, Ph.D., from the Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.

Four Vietnamese adults diagnosed with H5N1 influenza infection between January 2004 and February 2005 agreed to donate blood soon after they had recovered from their illness. In Switzerland, Dr. Lanzavecchia extracted antibody-producing white blood cells, called memory B cells, from the Vietnamese samples and treated them with a process he developed so that they rapidly and continuously produced large amounts of antibody. Next, researchers in Dr. Subbarao's lab screened 11,000 antibody-containing samples provided by the Swiss team and found a handful able to neutralize H5N1 influenza virus. Based on these results, Dr. Lanzavecchia purified the B cells and ultimately created four monoclonal antibodies (mAbs) that secrete H5N1-specific neutralizing antibodies.

... more about:
»Antibodies »H5N1 »MAB »NIAID »Protect »Subbarao

Dr. Subbarao and her coworkers first tested whether the human H5N1 mAbs could protect mice from severe H5N1 infection. Groups of five mice received either of two human H5N1 mAbs at one of three dosages or human mAbs against diphtheria or anthrax. One day later, the mice were exposed through their noses to lethal doses of H5N1 influenza virus.

All the control mice—those receiving non-H5N1 mAbs—rapidly developed severe illness and died within a week. In contrast, all the mice that received the first H5N1 mAb tested—regardless of dose—survived, while 80 percent of mice receiving the highest dose of the second H5N1 mAb survived. Additional tests showed that mice receiving either of the two protective H5N1 mAbs had levels of virus in the lungs that were 10 to 100 times lower than those in control mice, and little or no virus moved beyond the lungs.

The investigators also tested the therapeutic potential of the human H5N1 mAbs. Using blood products from influenza survivors is an old idea, the researchers note. During the flu pandemic of 1918-19, for example, physicians took serum from recovered flu patients and gave it to new victims; recent historical research indicates that those blood transfusions, when given early in the illness, sometimes saved recipients' lives.

In their study, Dr. Subbarao and her colleagues infected groups of mice with a lethal dose of an H5N1 virus that had circulated in Vietnam in 2004. A total of 60 mice were given one of the four H5N1 mAbs at 24, 48 or 72 hours after infection while a control group received non-influenza mAbs. All the mice in the control group died within 10 days of infection, while 58 of the 60 treated mice survived. All four H5N1 mAbs conferred robust protection. Most surprisingly, says Dr. Subbarao, the survival rate was excellent even when treatment was delayed for three days.

Spurred by these results, the NIAID investigators next tested whether the H5N1 mAbs might be used to treat mice infected with a related but distinct H5N1 virus. Although the four mAbs used in the experiment originated after infection with the 2004 H5N1 virus, three of them nevertheless prevented the mice from dying when given 24 hours after they were infected with a 2005 H5N1 virus. This suggests, the researchers say, that human mAbs may provide broad protection against variant H5N1 viruses—a desirable quality in any therapeutic aimed at the constantly evolving flu virus.

Taken together, the findings from this international collaboration are encouraging, says Dr. Subbarao. They show that fully human mAbs with potent H5N1 influenza virus neutralizing ability can be rapidly generated from the blood of convalescent patients and that these mAbs work well to both treat H5N1 infection and prevent death from such infection in a mouse model. The authors plan to take the research forward by scaling up the production of H5N1 mAbs and, if the technique proves safe and effective in additional animal tests, to evaluate these human mAbs in clinical trials in humans.

Anne A. Oplinger | EurekAlert!
Further information:
http://www3.niaid.nih.gov/news/focuson/flu
http://www.PandemicFlu.gov
http://www.nih.gov

Further reports about: Antibodies H5N1 MAB NIAID Protect Subbarao

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>