Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New designer lipid-like peptide with lipid nanostructures for drug delivery systems

30.05.2007
Disclaimer
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Scientists from Institute of Biophysics and Nanosystems Research (IBN), Austrian Academy of Sciences and of Centre for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, USA report the study of “Tuning Curvature and Stability of Monoolein Bilayers by Designer Lipid-Like Peptide Surfactants” in the May 30th issue of the online, open-access journal PLoS ONE. Their findings not only help us to understand the basic science of how lipid-like peptides interact with lipid molecules, but also may provide new strategies for the encapsulation and the delivery of biological active materials. They detailed their findings in the report on the impact of integrating short surfactant-like designer peptides in lipidic nanostructures.

Anan Yaghmur, Michael Rappolt, Peter Laggner and Shuguang Zhang reported the formations of dynamic nanostructures of lipid-like peptides that are like two-headed Janus, both water-loving and water-hating, which represent a new class of designer materials using common amino acids, the same basic molecules from meat, beans and fruits. These lipid-like peptides have excellent potential to solubilize membrane proteins and enzymes, and - as now demonstrated - can also be utilized to stabilize different self-assembled liquid crystalline nanostructures. Moreover, the surface charge density of lipidic nanostructures can be varied in a simple manner.

Dr. Anan Yaghmur, first author of the study, comments on the study, “the addition of small amounts of designer lipid-like peptides is sufficient to form systems with excellent potential for various biotechnological applications such as the encapsulation of water-insoluble drugs and the delivery of biological active materials.”

... more about:
»Drug »PLoS »Peptide »Zhang »lipid-like »nanostructure

Currently, many anticancer drugs are difficult to deliver to patients due to their difficulty to be soluble in water. “This is a systematic study to combine with lipid molecules,” Shuguang Zhang of MIT, a co-author said, “people have been curious about if these similar molecules can interact. This study provided the first answer”. “Since these lipid-like peptides can be designed, just like to design an elegant watch, an art object, a music instrument, a ski, or a pair of sunglasses, we have the ultimate control to the outcome of the structure and their properties” Zhang added.

This study stemmed from a scientific visit by Peter Laggner to Shuguang Zhang at MIT in Cambridge, USA in May 2006. They shared some ideas and decided to collaborate since Laggner is a world-expert on nanostructure using small angle X-ray scattering and Zhang can provide the designer lipid-like peptides that he has been studied since 2000.

In the near future, many colloidal aqueous dispersions, which are similar to milk and some paints, with confined inner nanostructures, will offer unique characteristics like high drug load capacities and low viscosity. Here these designer lipid-like peptides may play a key role in improving effective drug delivery systems.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000479

Further reports about: Drug PLoS Peptide Zhang lipid-like nanostructure

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>