Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny genes may increase cancer susceptibility

25.05.2007
New evidence indicates that small pieces of noncoding genetic material known as microRNAs (miRNAs) might influence cancer susceptibility. Differences in certain miRNAs may predispose some individuals to develop cancer, say researchers collaborating in a joint study at the Kimmel Cancer Center at Jefferson in Philadelphia, Ohio State University Medical Center in Columbus and Roswell Park Cancer Institute in Buffalo.

MiRNAs play a number of roles in biological regulation, including development and cell differentiation, helping to determine what type a cell ultimately becomes. But when damaged, they can contribute to cancer by either turning on cancer-causing genes or by inhibiting tumor-blocking genes. The ways that MiRNAs are expressed have been used to profile tumor types in humans.

To see if miRNAs could affect cancer risk, Linda Siracusa, Ph.D., associate professor of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University, research associate Cinzia Sevignani, Ph.D., and co-workers George Calin, M.D., Ph.D., and Carlo M. Croce, M.D., at Ohio State University in Columbus and Peter Demant, M.D., Ph.D., at Roswell Park Cancer Institute in Buffalo compared the mouse chromosome locations of genes known to affect cancer susceptibility – or "susceptibility loci" – in eight different types of tumors to the locations of mouse miRNAs.

Reporting in the journal Proceedings of the National Academy of Sciences, the team showed that overall, miRNAs were found 1.5 times more likely to be in susceptibility regions than in non-susceptibility regions. "MiRNAs appear to be frequently located near places in the mouse genome that affect cancer susceptibility," the researchers say, suggesting that miRNAs could be "a new family of cancer tumor susceptibility genes."

... more about:
»miRNA »particular »susceptibility

Susceptibility loci are forms of the same gene. While one form may give a person a higher risk of developing a cancer, an alternate form may confer resistance to that particular type of cancer.

The researchers identified changes in the DNA sequences surrounding several miRNAs that were located at or near the susceptibility areas in mouse strains with a variety of tumor types. The team also looked at which mouse strains were cancer-resistant and which were susceptible to cancer, uncovering seven miRNAs that had genetic sequence differences between the two groups. Five of these miRNAs had changes within their predicted promoter regions, which turn on and potentially regulate the genes' expression levels.

"We have hypothesized that changes in the promoter regions could affect the levels of miRNAs, which could influence a person's lifetime risk of cancer," Dr. Siracusa notes.

Dr. Siracusa and her collaborators plan to examine miRNA expression levels among inbred mice strains. "Could the level of a particular miRNA affect the expression of other genes and regulate the stability of the RNA transcript" she asks. "Having a slightly lower level of a particular miRNA could make a person more susceptible to a particular cancer or the reverse, or a slightly increased level might protect that person."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: miRNA particular susceptibility

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>