Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new wrinkle in evolution -- Man-made proteins

23.05.2007
Nature, through the trial and error of evolution, has discovered a vast diversity of life from what can only presumed to have been a primordial pool of building blocks.

Inspired by this success, a new Biodesign Institute research team, led by John Chaput, is now trying to mimic the process of Darwinian evolution in the laboratory by evolving new proteins from scratch. Using new tricks of molecular biology, Chaput and co-workers have evolved several new proteins in a fraction of the 3 billion years it took nature.

Their most recent results, published in the May 23rd edition of the journal PLoS ONE, have led to some surprisingly new lessons on how to optimize proteins which have never existed in nature before, in a process they call ‘synthetic evolution.’

"The goal of our research is to understand certain fundamental questions regarding the origin and evolution of proteins," said Chaput, a researcher in the institute’s Center for BioOptical Nanotechnology and assistant professor in Arizona State University’s department of chemistry and biochemistry. "Would proteins that we evolve in the lab look like proteins we see today in nature or do they look totally different from the set of proteins nature ultimately chose" By gaining a better understanding of these questions, we hope to one day create new tailor-made catalysts that can be used as therapeutics in molecular medicine or biocatalysts in biotechnology."

... more about:
»ATP »Chaput »Evolution »Stability »amino acid »parent

The building blocks of proteins are 20 different amino acids that are strung together and folded to make the unique globular shape, stability and function of every protein. The mixing and matching of the amino acid chain like numbers in the lottery are what favor the odds in nature of finding just the right combinations to help generate biological diversity. Yet no one can predict how the string of amino acids sequence folds to make the 3-D functional structure of a protein.

To select the raw ingredients to create the proteins, Chaput’s group (which includes Harvard collaborator Jack Szostak, and ASU colleagues Jim Allen, Meitian Wang, Matthew Rosenow and Matthew Smith) began their quest by further evolving a protein that had been previously selected from a pool of random sequences.

Jack Szostak and Anthony Keefe first made the parental protein in 2001. To achieve their feat, they stacked the odds of finding just one or two new proteins and generated a library of random amino acid sequences so vast — 400 trillion — that it dwarfs the number of items in the entire Library of Congress (134 million).

They started with a small protein stretch 80 amino acids long. This basic protein segment acts as a protein scaffold that can be selected for the ability to strongly clutch its target molecule, ATP.

There was only one problem, the parental protein could bind ATP, but it wasn’t very stable without it.

"It turns out that protein stability is a major problem in biology," said Chaput. "As many as half of the 30,000 genes discovered from the human genome project contain proteins that we really don’t know what their structure is or whether or not they would be stable. So for our goal, we wanted to learn more about the evolution of protein folding and stability."

Chaput’s group decided to speed up protein evolution once again by randomly mutating the parental sequence with a selection specically designed to improve protein stability. The team upped the ante and added increasing amounts of a salt, guanidine hydrochloride, making it harder for the protein fragment to bind its target (only the top 10 percent of strongest ATP binders remained). After subjecting the protein fragments to several rounds of this selective environmental pressure, only the ‘survival of the fittest’ ATP binding protein fragments remained.

The remaining fragments were identified and amino acid sequences compared with one another. Surprisingly, Chaput had bested nature’s designs, as the test tube derived protein was not only stable, but could bind ATP twice as tight as anything nature had come up with before.

To understand how this information is encoded in a protein sequence, Chaput and colleagues solved the 3-D crystal structures for their evolutionary optimized protein, termed DX, and the parent sequence.

In a surprising result, just two amino acids changes in the protein sequence were found to enhance the binding, solubility and heat stability. "We were shocked, because when we compared the crystal structures of the parent sequence to the DX sequence, we didn’t see any significant changes," said Chaput. "Yet no one could have predicted that these two amino acids changes would improve the function of the DX protein compared to the parent.

The results have helped provide a new understanding of how subtle amino acid changes contribute to the protein folding and stability. Chaput’s team has developed the technology potential to take any of nature’s proteins and further improve its stability and function. "We have the distinct advantage over nature of being able to freeze the evolution of our lab-evolved proteins at different time points to begin to tease apart this random process and relate it to the final protein function," said Chaput.

Next, Chaput plans on further expanding his efforts to evolve proteins with new therapeutic features or catalytic functions.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu
http://www.biodesign.asu.edu

Further reports about: ATP Chaput Evolution Stability amino acid parent

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>